ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Главы:
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Два правильных равных треугольника расположены в пространстве в параллельных плоскостях P1 и P2, причём отрезок, соединяющий их центры, перпендикулярен плоскостям. Найти геометрическое место точек, являющихся серединами отрезков, соединяющих точки одного треугольника с точками другого треугольника.

Вниз   Решение


Можно ли провести из одной точки на плоскости пять лучей так, чтобы среди образованных ими углов было ровно четыре острых?
Рассматриваются углы не только между соседними, но и между любыми двумя лучами.

ВверхВниз   Решение


Вася задумал восемь клеток шахматной доски, никакие две из которых не лежат в одной строке или в одном столбце. За ход Петя выставляет на доску восемь ладей, не бьющих друг друга, а затем Вася указывает все ладьи, стоящие на задуманных клетках. Если количество ладей, указанных Васей на этом ходе, чётно (то есть 0, 2, 4, 6 или 8), то Петя выигрывает; иначе все фигуры снимаются с доски и Петя делает следующий ход. За какое наименьшее число ходов Петя сможет гарантированно выиграть?

ВверхВниз   Решение


Незнайка разрезал фигуру на трёхклеточные и четырёхклеточные уголки, нарисованные справа от неё. Сколько трёхклеточных уголков могло получиться?

ВверхВниз   Решение


Докажите тождество: 12 + 22 +...+ n2 = $\displaystyle {\textstyle\frac{1}{6}}$n(n + 1)(2n + 1).

ВверхВниз   Решение


На гипотенузе AB прямоугольного треугольника ABC внешним образом построен квадрат ABPQ. Пусть  $ \alpha$ = $ \angle$ACQ,$ \beta$ = $ \angle$QCP и  $ \gamma$ = $ \angle$PCB. Докажите, что  cos$ \beta$ = cos$ \alpha$cos$ \gamma$.

Вверх   Решение

Задачи

Страница: << 72 73 74 75 76 77 78 >> [Всего задач: 1956]      



Задача 56852  (#05.019)

Тема:   [ Прямоугольные треугольники (прочее) ]
Сложность: 4
Классы: 8

Сумма углов при основании трапеции равна  90o. Докажите, что отрезок, соединяющий середины оснований, равен полуразности оснований.
Прислать комментарий     Решение


Задача 56853  (#05.021B)

Тема:   [ Прямоугольные треугольники (прочее) ]
Сложность: 4
Классы: 8

Диагонали AC и BD параллелограмма ABCD пересекаются в точке O. Точка M лежит на прямой AB, причём $ \angle$AMO = $ \angle$MAD. Докажите, что точка M равноудалена от точек C и D.
Прислать комментарий     Решение


Задача 53392  (#05.020)

Темы:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла (ГМТ) ]
Сложность: 3
Классы: 8,9

В прямоугольном треугольнике ABC проведена высота CK из вершины прямого угла C, а в треугольнике ACK – биссектриса CE. Докажите, что  CB = BE.

Прислать комментарий     Решение

Задача 56855  (#05.021)

Темы:   [ Отношения линейных элементов подобных треугольников ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC с прямым углом C проведены высота CD и биссектриса CF; DK и DL – биссектрисы треугольников BDC и ADC.
Докажите, что CLFK – квадрат.

Прислать комментарий     Решение

Задача 56856  (#05.022)

Тема:   [ Прямоугольные треугольники (прочее) ]
Сложность: 5
Классы: 8

На гипотенузе AB прямоугольного треугольника ABC внешним образом построен квадрат ABPQ. Пусть  $ \alpha$ = $ \angle$ACQ,$ \beta$ = $ \angle$QCP и  $ \gamma$ = $ \angle$PCB. Докажите, что  cos$ \beta$ = cos$ \alpha$cos$ \gamma$.
Прислать комментарий     Решение


Страница: << 72 73 74 75 76 77 78 >> [Всего задач: 1956]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .