ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Доказать, что 11551958 + 341958 ≠ n², где n – целое. На графике многочлена с целыми коэффициентами отмечены две точки с целыми координатами. Лист клетчатой бумаги размером 5×n заполнен карточками размером 1×2 так, что каждая карточка занимает целиком две соседние клетки. На каждой карточке написаны числа 1 и –1. Известно, что произведения чисел по строкам и столбцам образовавшейся таблицы положительны. При каких n это возможно? Многочлен P(x) с целыми коэффициентами при некоторых целых x принимает значения 1, 2 и 3. Доказать, что последовательность xn = sin(n2) не стремится к нулю при n, стремящемся к бесконечности. Найти все действительные решения системы
Проекции многоугольника на ось OX, биссектрису 1-го и 3-го координатных
углов, ось OY и биссектрису 2-го и 4-го координатных углов равны
соответственно 4, 3
На круглой поляне радиуса R растут три круглые сосны одинакового диаметра.
Центры их стволов находятся на расстоянии
Пусть p – простое число, и a не делится на p. Докажите, что найдется натуральное число b, для которого ab ≡ 1 (mod p). Докажите, что при любом простом p Из чисел от 1 до 2n выбрано n + 1 число. Докажите, что среди выбранных чисел найдутся два, одно из которых делится на другое. Дан четырёхугольник; A, B, C, D — последовательные середины его сторон, P, Q — середины диагоналей. Доказать, что треугольник BCP равен треугольнику ADQ. Дан бумажный треугольник, площадь которого равна ½, а квадраты всех сторон – целые числа. Можно ли составить из цифр 2, 3, 4, 9 (каждую цифру можно использовать сколько угодно раз) два числа, одно из которых в 19 раз больше другого? Длины сторон треугольника — последовательные
целые числа. Найдите эти числа, если известно, что одна из
медиан перпендикулярна одной из биссектрис.
|
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 176]
Длины сторон треугольника — последовательные
целые числа. Найдите эти числа, если известно, что одна из
медиан перпендикулярна одной из биссектрис.
Длины всех сторон прямоугольного треугольника
являются целыми числами, причем наибольший общий делитель
этих чисел равен 1. Докажите, что его катеты равны 2mn
и m2 - n2, а гипотенуза равна m2 + n2, где m и n — натуральные числа.
Радиус вписанной окружности треугольника равен 1, а
длины его сторон — целые числа. Докажите, что эти числа
равны 3, 4, 5.
Приведите пример вписанного четырехугольника
с попарно различными целочисленными длинами сторон,
у которого длины диагоналей, площадь и радиус описанной
окружности — целые числа (Брахмагупта).
а) Укажите два прямоугольных треугольника, из
которых можно сложить треугольник, длины сторон и площадь
которого — целые числа.
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 176]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке