Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Попробуйте расшифровать отрывок из книги "Алиса в Зазеркалье": " — БЕРПИ Э ЙДЕМГОКВЭЫ БИБЕО-ЖАКЙПЧ ЗВЕЛЕ,  — ЗБИСИВ ФИВМИУ-КЕВМИУ ПЕЛЕВЧЖЕ ДГОСГАМОВЧЖЕ,  — ЕЖЕ ЕСЖИЬИОМ МЕВЧБЕ МЕ, ЬМЕ Э ЦЕЬЙ, ЬМЕКЮ ЕЖЕ ЕСЖИЬИВЕ,  — ЖА КЕВЧФО, ЖА ТОЖЧФО". Текст зашифрован так: десять букв ("а", "е", "и", "й", "о", "у", "ы", "э", "ю", "я") разбиты на пары, и каждая из этих букв в тексте заменена второй из пары. Все остальные буквы точно так же разбиты на пары.

Вниз   Решение


Даны русские слова: люк, яр, ель, лен, лезь. Определите, что получится, если звуки, из которых состоят эти слова, произнести в обратном порядке.

ВверхВниз   Решение


Поняв принципы, по которым составлены таблички чисел, изображённые на рисунках, в первую табличку вставьте недостающее число, а из второй уберите лишнее число.

ВверхВниз   Решение


а) Из точки P описанной окружности треугольника ABC проведены прямые PA1, PB1 и PC1 под данным (ориентированным) углом $ \alpha$ к прямым BC, CA и AB соответственно (точки A1, B1 и C1 лежат на прямых BC, CA и AB). Докажите, что точки A1, B1 и C1 лежат на одной прямой.
б) Докажите, что при замене в определении прямой Симсона угла  90o на угол $ \alpha$ она повернется на угол  90o - $ \alpha$.

ВверхВниз   Решение


а) Из точки P описанной окружности треугольника ABC опущены перпендикуляры PA1 и PB1 на прямые BC и AC. Докажите, что  PA . PA1 = 2Rd, где R — радиус описанной окружности, d — расстояние от точки P до прямой A1B1.
б) Пусть $ \alpha$ — угол между прямыми A1B1 и BC. Докажите, что  cos$ \alpha$ = PA/2R.

ВверхВниз   Решение


Точки A, B, C, P и Q лежат на окружности с центром O, причем углы между вектором  $ \overrightarrow{OP}$ и векторами  $ \overrightarrow{OA}$,$ \overrightarrow{OB}$,$ \overrightarrow{OC}$ и  $ \overrightarrow{OQ}$ равны  $ \alpha$,$ \beta$,$ \gamma$ и  ($ \alpha$ + $ \beta$ + $ \gamma$)/2. Докажите. что прямая Симсона точки P относительно треугольника ABC параллельна OQ.

Вверх   Решение

Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 176]      



Задача 56941  (#05.092)

Тема:   [ Прямая Симсона ]
Сложность: 5
Классы: 9,10

Точка P движется по описанной окружности треугольника ABC. Докажите, что при этом прямая Симсона точки P относительно треугольника ABC поворачивается на угол, равный половине угловой величины дуги, пройденной точкой P.
Прислать комментарий     Решение


Задача 56942  (#05.093)

Тема:   [ Прямая Симсона ]
Сложность: 6
Классы: 9

Докажите, что прямые Симсона двух диаметрально противоположных точек описанной окружности треугольника ABC перпендикулярны, а их точка пересечения лежит на окружности девяти точек (см. задачу 5.106).
Прислать комментарий     Решение


Задача 56943  (#05.094)

Тема:   [ Прямая Симсона ]
Сложность: 6
Классы: 9

Точки A, B, C, P и Q лежат на окружности с центром O, причем углы между вектором  $ \overrightarrow{OP}$ и векторами  $ \overrightarrow{OA}$,$ \overrightarrow{OB}$,$ \overrightarrow{OC}$ и  $ \overrightarrow{OQ}$ равны  $ \alpha$,$ \beta$,$ \gamma$ и  ($ \alpha$ + $ \beta$ + $ \gamma$)/2. Докажите. что прямая Симсона точки P относительно треугольника ABC параллельна OQ.
Прислать комментарий     Решение


Задача 56944  (#05.094.1)

Тема:   [ Прямая Симсона ]
Сложность: 6
Классы: 9

Точки A, B, C и P лежат на окружности с центром O. Стороны треугольника A1B1C1 параллельны прямым PA, PB, PC ( PA| B1C1 и т. д.). Через вершины треугольника A1B1C1 проведены прямые, параллельные сторонам треугольника ABC.
а) Докажите, что эти прямые пересекаются в одной точке P1, которая лежит на описанной окружности треугольника A1B1C1.
б) Докажите, что прямая Симсона точки P1 параллельна прямой OP.
Прислать комментарий     Решение


Задача 56945  (#05.095)

Тема:   [ Прямая Симсона ]
Сложность: 6
Классы: 9

Хорда PQ описанной окружности треугольника ABC перпендикулярна стороне BC. Докажите, что прямая Симсона точки P относительно треугольника ABC параллельна прямой AQ.
Прислать комментарий     Решение


Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 176]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .