ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что прямые, соединяющие противоположные точки касания
описанного четырехугольника, проходят через точку пересечения диагоналей.
Каждая из трех прямых делит площадь фигуры
пополам. Докажите, что часть фигуры, заключенная внутри
треугольника, образованного этими прямыми, имеет площадь,
не превосходящую 1/4 площади всей фигуры.
В выпуклом четырехугольнике ABCD существуют
три внутренние точки
P1, P2, P3, не лежащие на одной
прямой и обладающие тем свойством, что сумма площадей
треугольников ABPi и CDPi равна сумме площадей
треугольников BCPi и ADPi для i = 1, 2, 3. Докажите, что ABCD — параллелограмм.
α, β и γ - углы треугольника ABC. Докажите, что
Даны две пересекающиеся окружности радиуса R, причем
расстояние между их центрами больше R. Докажите, что
β = 3α (рис.).
а) Докажите, что площадь выпуклого четырехугольника ABCD вычисляется по формуле
S2 = (p - a)(p - b)(p - c)(p - d )- abcd cos2((B + D)/2),
где p — полупериметр, a, b, c, d — длины сторон.
б) Докажите, что если четырехугольник ABCD вписанный, то S2 = (p - a)(p - b)(p - c)(p - d ). в) Докажите, что если четырехугольник ABCD описанный, то S2 = abcd sin2((B + D)/2). Докажите, что если
В треугольнике ABC проведены медиана CM и высота CH.
Прямые, проведенные через произвольную точку P плоскости
перпендикулярно CA, CM и CB, пересекают прямую CH
в точках A1, M1 и B1. Докажите, что
A1M1 = B1M1.
Точки A и B лежат на прямых a и b соответственно,
а точка P не лежит ни на одной из этих прямых. Циркулем
и линейкой проведите через P прямую, пересекающую прямые a
и b в точках X и Y соответственно таких, что длины
отрезков AX и BY имеют а) данное отношение; б) данное
произведение.
Используя проективные преобразования прямой,
докажите теорему о полном четырехстороннике (задача 30.34).
Диагонали четырехугольника ABCD пересекаются
в точке O. Докажите, что
SAOB = SCOD тогда и только тогда,
когда
BC || AD.
Докажите, что доску размером 10×10 клеток нельзя разрезать на фигурки в форме буквы T, состоящие из четырёх клеток. На стороне AB четырехугольника ABCD взята
точка M1. Пусть M2 — проекция M1 на прямую BC
из D, M3 — проекция M2 на CD из A, M4 —
проекция M3 на DA из B, M5 — проекция M4 на AB
из C и т. д. Докажите, что
M13 = M1 (а значит,
M14 = M2,
M15 = M3 и т. д.).
В угол с вершиной A вписана окружность, касающаяся сторон угла в точках B и C. В области, ограниченной отрезками AB, AC и меньшей дугой BC, расположен отрезок. Докажите, что его длина не превышает AB. |
Страница: 1 [Всего задач: 5]
В угол с вершиной A вписана окружность, касающаяся сторон угла в точках B и C. В области, ограниченной отрезками AB, AC и меньшей дугой BC, расположен отрезок. Докажите, что его длина не превышает AB.
а) Внутри треугольника ABC расположен отрезок MN.
Докажите, что длина MN не превосходит наибольшей стороны
треугольника.
Внутри сектора AOB круга радиуса R = AO = BO лежит
отрезок MN. Докажите, что MN
Внутри окружности расположен выпуклый пятиугольник.
Докажите, что хотя бы одна из его сторон не больше стороны правильного
пятиугольника, вписанного в эту окружность.
Даны треугольник ABC со сторонами a > b > c и
произвольная точка O внутри его. Пусть прямые
AO, BO, CO пересекают
стороны треугольника в точках P, Q, R. Докажите, что
OP + OQ + OR < a.
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке