Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Постройте образ точки A при инверсии относительно окружности S с центром O.

Вниз   Решение


Дан угол ABC и прямая l. Постройте прямую, параллельную прямой l, на которой стороны угла ABC высекают отрезок данной длины a.

ВверхВниз   Решение


Пусть a < b. Докажите, что  a + ha $ \leq$ b + hb.

ВверхВниз   Решение


Вокруг эллипса описан прямоугольник. Докажите, что длина его диагонали не зависит от положения прямоугольника.

ВверхВниз   Решение


Каждая диагональ выпуклого пятиугольника ABCDE отсекает от него треугольник единичной площади. Вычислите площадь пятиугольника ABCDE.

ВверхВниз   Решение


На плоскости расположено n$ \ge$5 окружностей так, что любые три из них имеют общую точку. Докажите, что тогда и все окружности имеют общую точку.

ВверхВниз   Решение


Докажите, что если вершины выпуклого n-угольника лежат в узлах клетчатой бумаги, а внутри и на его сторонах других узлов нет, то  n ≤ 4.

ВверхВниз   Решение


В сегмент вписываются всевозможные пары пересекающихся окружностей, и для каждой пары через точки их пересечения проводится прямая. Докажите, что все эти прямые проходят через одну точку (см. задачу 3.44).

ВверхВниз   Решение


Впишите в данную окружность n-угольник, одна из сторон которого проходит через данную точку, а остальные стороны параллельны данным прямым.

ВверхВниз   Решение


Докажите, что 3$ \left(\vphantom{\frac{a}{r_a}+\frac{b}{r_b}+\frac{c}{r_c}}\right.$$ {\frac{a}{r_a}}$ + $ {\frac{b}{r_b}}$ + $ {\frac{c}{r_c}}$$ \left.\vphantom{\frac{a}{r_a}+\frac{b}{r_b}+\frac{c}{r_c}}\right)$ $ \geq$ 4$ \left(\vphantom{\frac{r_a}{a}+\frac{r_b}{b}+\frac{r_c}{c}}\right.$$ {\frac{r_a}{a}}$ + $ {\frac{r_b}{b}}$ + $ {\frac{r_c}{c}}$$ \left.\vphantom{\frac{r_a}{a}+\frac{r_b}{b}+\frac{r_c}{c}}\right)$.

ВверхВниз   Решение


Продолжения сторон AB и CD прямоугольника ABCD пересекают некоторую прямую в точках M и N, а продолжения сторон AD и BC пересекают ту же прямую в точках P и Q. Постройте прямоугольник ABCD, если даны точки M, N, P, Q и длина a стороны AB.

ВверхВниз   Решение


Автор: Ионин Ю.И.

В трёх вершинах квадрата находятся три кузнечика. Они играют в чехарду, то есть прыгают друг через друга. При этом, если кузнечик A прыгает через кузнечика B, то после прыжка он оказывается от B на том же расстоянии, что и до прыжка, и, естественно, на той же прямой. Может ли один из них попасть в четвёртую вершину квадрата?

ВверхВниз   Решение


Шестиугольник ABCDEF правильный, K и M — середины отрезков BD и EF. Докажите, что треугольник AMK правильный.

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 53]      



Задача 57934  (#18.015)

Тема:   [ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 4
Классы: 9

Шестиугольник ABCDEF правильный, K и M — середины отрезков BD и EF. Докажите, что треугольник AMK правильный.
Прислать комментарий     Решение


Задача 57935  (#18.016)

Тема:   [ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 4
Классы: 9

Пусть M и N — середины сторон CD и DE правильного шестиугольника ABCDEF, P — точка пересечения отрезков AM и BN.
а) Найдите величину угла между прямыми AM и BN.
б) Докажите, что SABP = SMDNP.
Прислать комментарий     Решение


Задача 57936  (#18.017)

Тема:   [ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 4
Классы: 9

На сторонах AB и BC правильного треугольника ABC взяты точки M и N так, что MN| AC, E — середина отрезка AN, D — центр треугольника BMN. Найдите величины углов треугольника CDE.
Прислать комментарий     Решение


Задача 57937  (#18.018)

Тема:   [ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 4
Классы: 9

На сторонах треугольника ABC внешним образом построены правильные треугольники ABC1, AB1C и A1BC. Пусть P и Q — середины отрезков A1B1 и A1C1. Докажите, что треугольник APQ правильный.
Прислать комментарий     Решение


Задача 57938  (#18.019)

Тема:   [ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 4
Классы: 9

На сторонах AB и AC треугольника ABC внешним образом построены правильные треугольники ABC' и AB'C. Точка M делит сторону BC в отношении BM : MC = 3 : 1; K и L — середины сторон AC' и B'C. Докажите, что углы треугольника KLM равны  30o, 60o и  90o.
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 53]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .