ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Известно, что в кодовом замке исправны только кнопки с номерами 1, 2, 3, а код этого замка трёхзначен и не содержит других цифр. Написать последовательность цифр наименьшей длины, наверняка открывающую этот замок (замок открывается, как только подряд и в правильном порядке нажаты все три цифры его кода). Докажите, что прямые, соединяющие вершины треугольника с точками
касания противоположных сторон с вписанной окружностью,
пересекаются в одной точке.
Точки A, B, C, D, E, F лежат на одной окружности.
Докажите, что точки пересечения прямых AB и DE, BC
и EF, CD и FA лежат на одной прямой (Паскаль).
а)
ctg а) Прямые l1 и l2 параллельны. Докажите, что
Sl1oSl2 = T2a, где
Ta — параллельный перенос,
переводящий l1 в l2, причем
a Докажите, что если α, β и γ - углы треугольника ABC. Докажите, что
Каждая из шести окружностей касается четырех
из оставшихся пяти (рис.). Докажите, что для любой
пары несоприкасающихся окружностей (из этих шести) их
радиусы и расстояние между центрами связаны соотношением
d2 = r12 + r22±6r1r2 (к плюск — если окружности не
лежат одна внутри другой, к минуск — в противном случае).
Доказать, что На плоскости взяты шесть точек A1, A2, B1, B2, C1, C2.
Докажите, что если окружности, описанные около треугольников A1B1C1,
A1B2C2, A2B1C2, A2B2C1,
проходят через одну точку, то и окружности, описанные около треугольников
A2B2C2, A2B1C1, A1B2C1, A1B1C2, проходят через
одну точку.
|
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]
На плоскости взяты шесть точек A1, A2, B1, B2, C1, C2.
Докажите, что если окружности, описанные около треугольников A1B1C1,
A1B2C2, A2B1C2, A2B2C1,
проходят через одну точку, то и окружности, описанные около треугольников
A2B2C2, A2B1C1, A1B2C1, A1B1C2, проходят через
одну точку.
В этой задаче мы будем рассматривать наборы
из n прямых общего положения, т. е. наборы, в которых
никакие две прямые не параллельны и никакие три не
проходят через одну точку.
Пусть на двух пересекающихся прямых l1 и l2
выбраны точки M1 и M2, не совпадающие с точкой
пересечения M этих прямых. Поставим в соответствие им
окружность, проходящую через M1, M2 и M.
Окружности
S1, S2,..., Sn касаются двух окружностей R1
и R2 и, кроме того, S1 касается S2 в точке A1, S2
касается S3 в точке A2..., Sn - 1 касается Sn в точке An - 1. Докажите, что точки
A1, A2,..., An - 1
лежат на одной окружности.
Докажите, что если существует цепочка окружностей S1, S2,..., Sn, каждая из которых касается двух соседних (Sn касается Sn - 1 и S1) и двух данных непересекающихся окружностей R1 и R2, то таких цепочек бесконечно много. А именно, для любой окружности T1, касающейся R1 и R2 (одинаковым образом, если R1 и R2 не лежат одна в другой, внешним и внутренним образом в противном случае), существует аналогичная цепочка из n касающихся окружностей T1, T2,..., Tn (поризм Штейнера).
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке