Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Известно, что в кодовом замке исправны только кнопки с номерами 1, 2, 3, а код этого замка трёхзначен и не содержит других цифр. Написать последовательность цифр наименьшей длины, наверняка открывающую этот замок (замок открывается, как только подряд и в правильном порядке нажаты все три цифры его кода).

Вниз   Решение


Докажите, что прямые, соединяющие вершины треугольника с точками касания противоположных сторон с вписанной окружностью, пересекаются в одной точке.

ВверхВниз   Решение


Точки A, B, C, D, E, F лежат на одной окружности. Докажите, что точки пересечения прямых AB и DE, BC и EF, CD и FA лежат на одной прямой (Паскаль).

ВверхВниз   Решение


а)  ctg$ \alpha$ + ctg$ \beta$ + ctg$ \gamma$ $ \geq$ $ \sqrt{3}$;
б)  tg($ \alpha$/2) + tg($ \beta$/2) + tg($ \gamma$/2) $ \geq$ $ \sqrt{3}$.

ВверхВниз   Решение


а) Прямые l1 и l2 параллельны. Докажите, что Sl1oSl2 = T2a, где  Ta — параллельный перенос, переводящий l1 в l2, причем a $ \perp$ l1.
б) Прямые l1 и l2 пересекаются в точке O. Докажите, что Sl2oSl1 = R2$\scriptstyle \alpha$O, где  R$\scriptstyle \alpha$O — поворот, переводящий l1 в l2.

ВверхВниз   Решение


Докажите, что если     при  n = 2, ..., 10,  то  

ВверхВниз   Решение


α, β и γ - углы треугольника ABC. Докажите, что
sin 2$ \alpha$ + sin 2$ \beta$ + sin 2$ \gamma$ = 4 sin$ \alpha$sin$ \beta$sin$ \gamma$.

ВверхВниз   Решение


Каждая из шести окружностей касается четырех из оставшихся пяти (рис.). Докажите, что для любой пары несоприкасающихся окружностей (из этих шести) их радиусы и расстояние между центрами связаны соотношением d2 = r12 + r22±6r1r2 (к плюск — если окружности не лежат одна внутри другой, к минуск — в противном случае).


ВверхВниз   Решение


Доказать, что
  а) Степень двойки не может оканчиваться на четыре одинаковых цифры.
  б) Квадрат не может состоять из одинаковых цифр (если он не однозначный).
  в) Квадрат не может оканчиваться на четыре одинаковых цифры.

ВверхВниз   Решение


На плоскости взяты шесть точек A1, A2, B1, B2, C1, C2. Докажите, что если окружности, описанные около треугольников A1B1C1, A1B2C2, A2B1C2, A2B2C1, проходят через одну точку, то и окружности, описанные около треугольников A2B2C2, A2B1C1, A1B2C1, A1B1C2, проходят через одну точку.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]      



Задача 58353  (#28.034)

Тема:   [ Точки, лежащие на одной окружности, и окружности, проходящие через одну точку ]
Сложность: 6
Классы: 9,10

На плоскости взяты шесть точек A1, A2, B1, B2, C1, C2. Докажите, что если окружности, описанные около треугольников A1B1C1, A1B2C2, A2B1C2, A2B2C1, проходят через одну точку, то и окружности, описанные около треугольников A2B2C2, A2B1C1, A1B2C1, A1B1C2, проходят через одну точку.
Прислать комментарий     Решение


Задача 58354  (#28.035)

Темы:   [ Точки, лежащие на одной окружности, и окружности, проходящие через одну точку ]
[ Инверсия помогает решить задачу ]
[ Индукция в геометрии ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 8-
Классы: 9,10,11

В этой задаче мы будем рассматривать наборы из n прямых общего положения, т. е. наборы, в которых никакие две прямые не параллельны и никакие три не проходят через одну точку.
Набору из двух прямых общего положения поставим в соответствие точку — их точку пересечения, а набору из трех прямых общего положения — окружность, проходящую через три точки пересечения. Если l1, l2, l3, l4 — четыре прямые общего положения, то четыре окружности Si, соответствующие четырем тройкам прямых, получаемых отбрасыванием прямой li, проходят через одну точку (см. задачу 2.83, а)), которую мы и поставим в соответствие четверке прямых. Эту конструкцию можно продолжить.
а) Пусть li, i = 1,..., 5 — пять прямых общего положения. Докажите, что пять точек Ai, соответствующих четверкам прямых, получаемых отбрасыванием прямой li, лежат на одной окружности.
б) Докажите, что эту цепочку можно продолжить, поставив в соответствие каждому набору из n прямых общего положения точку при четном n и окружность при нечетном n, так, что n окружностей (точек), соответствующих наборам из n - 1 прямых, проходят через эту точку (лежат на этой окружности).
Прислать комментарий     Решение


Задача 58355  (#28.036)

Темы:   [ Точки, лежащие на одной окружности, и окружности, проходящие через одну точку ]
[ Инверсия помогает решить задачу ]
[ Индукция в геометрии ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 8-
Классы: 9,10,11

Пусть на двух пересекающихся прямых l1 и l2 выбраны точки M1 и M2, не совпадающие с точкой пересечения M этих прямых. Поставим в соответствие им окружность, проходящую через M1, M2 и M.
Если (l1, M1), (l2, M2), (l3, M3) — прямые с выбранными точками в общем положении, то согласно задаче 2.80, а) три окружности, соответствующие парам (l1, M1) и (l2, M2), (l2, M2) и (l3, M3), (l3, M3) и (l1, M1), пересекаются в одной точке, которую мы поставим в соответствие тройке прямых с точками.
а) Пусть l1, l2, l3, l4 — четыре прямые общего положения, на каждой из которых задано по точке, причем эти точки лежат на одной окружности. Докажите, что четыре точки, соответствующие тройкам, получаемым отбрасыванием одной из прямых, лежат на одной окружности.
б) Докажите, что каждому набору из n прямых общего положения с заданными на них точками, лежащими на одной окружности, можно поставить в соответствие точку (при нечетном n) или окружность (при четном n) так, что n окружностей (точек при четном n), соответствующих наборам из n - 1 прямых, проходят через эту точку (лежат на этой окружности при четном n).
Прислать комментарий     Решение


Задача 58356  (#28.037)

Темы:   [ Цепочки окружностей. Теорема Фейербаха ]
[ Касающиеся окружности ]
[ Инверсия помогает решить задачу ]
Сложность: 7+
Классы: 9,10,11

Окружности S1, S2,..., Sn касаются двух окружностей R1 и R2 и, кроме того, S1 касается S2 в точке A1, S2 касается S3 в точке A2..., Sn - 1 касается Sn в точке An - 1. Докажите, что точки A1, A2,..., An - 1 лежат на одной окружности.
Прислать комментарий     Решение


Задача 58357  (#28.038)

Темы:   [ Цепочки окружностей. Теорема Фейербаха ]
[ Касающиеся окружности ]
[ Инверсия помогает решить задачу ]
Сложность: 7+
Классы: 9,10,11

Докажите, что если существует цепочка окружностей S1, S2,..., Sn, каждая из которых касается двух соседних (Sn касается Sn - 1 и S1) и двух данных непересекающихся окружностей R1 и R2, то таких цепочек бесконечно много. А именно, для любой окружности T1, касающейся R1 и R2 (одинаковым образом, если R1 и R2 не лежат одна в другой, внешним и внутренним образом в противном случае), существует аналогичная цепочка из n касающихся окружностей T1, T2,..., Tn (поризм Штейнера).
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .