ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Годы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан треугольник ABC. Обозначим через M середину стороны AC, а через P – середину отрезка CM. Описанная окружность треугольника ABP пересекает сторону BC во внутренней точке Q. Докажите, что ∠ABM = ∠MQP. Решение |
Страница: << 88 89 90 91 92 93 94 >> [Всего задач: 1957]
Дан треугольник ABC. Обозначим через M середину стороны AC, а через P – середину отрезка CM. Описанная окружность треугольника ABP пересекает сторону BC во внутренней точке Q. Докажите, что ∠ABM = ∠MQP.
Миша заметил, что на электронном табло, показывающем курс доллара к рублю (4 цифры, разделенные десятичной запятой), горят те же самые четыре различные цифры, что и месяц назад, но в другом порядке. При этом курс вырос ровно на 20%. Приведите пример того, как такое могло произойти.
Будем называть натуральное число почти квадратом, если это либо точный квадрат, либо точный квадрат, умноженный на простое число.
Существует ли такое натуральное число n, что числа n, n², n³ начинаются на одну и ту же цифру, отличную от единицы?
По кругу в некотором порядке расставлены все натуральные числа от 1 до 1000 таким образом, что каждое из чисел является делителем суммы двух своих соседей. Известно, что рядом с числом k стоят два нечётных числа. Какой чётности может быть число k?
Страница: << 88 89 90 91 92 93 94 >> [Всего задач: 1957] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|