ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
соревнования:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Начнём считать пальцы на правой руке: первый – мизинец, второй – безымянный, третий – средний, четвёртый – указательный, пятый – большой, шестой – снова указательный, седьмой – снова средний, восьмой – безымянный, девятый – мизинец, десятый – безымянный и т. д. Какой палец будет по счету 2004-м? Медиану AA0 треугольника ABC отложили от точки A0 перпендикулярно стороне BC во внешнюю сторону треугольника. Обозначим второй конец построенного отрезка через A1. Аналогично строятся точки B1 и C1. Найдите углы треугольника A1B1C1, если углы треугольника ABC равны 30°, 30° и 120°. Точечный прожектор, находящийся в вершине B равностороннего треугольника ABC, освещает угол α. Найдите все такие значения α, не превосходящие 60°, что при любом положении прожектора, когда освещенный угол целиком находится внутри угла ABC, из освещенного и двух неосвещенных отрезков стороны AC можно составить треугольник. В 100 ящиках лежат яблоки, апельсины и бананы. Докажите, что можно так выбрать 51 ящик, что в них окажется не менее половины всех яблок, не менее половины всех апельсинов и не менее половины всех бананов. Докажите, что если натуральное число N представляется в виде суммы трёх квадратов целых чисел, делящихся на 3, то оно также представляется в виде суммы трёх квадратов целых чисел, не делящихся на 3.
При каких натуральных n для любых чисел α , β , γ ,
являющихся величинами углов остроугольного треугольника, справедливо неравенство
В стране несколько городов, некоторые пары городов соединены двусторонними беспосадочными авиалиниями, принадлежащими k авиакомпаниям. Известно, что каждые две линии одной авиакомпании имеют общий конец. Докажите, что все города можно разбить на k + 2 группы так, что никакие два города из одной группы не соединены авиалинией. а) Пусть
Подруги. Три подруги были на выпускном балу в белом, красном и голубом платье. Их туфли были тех же трёх цветов. Только у Тамары цвета платья и туфель совпадали. Валя была в белых туфлях. Ни платье, ни туфли Лиды не были красными. Определите цвета платьев и туфель у подруг. Пусть a, b и c – длины сторон треугольника площади S; α1, β1 и γ1 – углы некоторого другого треугольника. Докажите, что а) Докажите, что все окружности и прямые задаются уравнениями вида
Az
где A и D — вещественные числа, а c — комплексное число. Наоборот,
докажите, что любое уравнение такого вида задает либо окружность, либо прямую,
либо точку, либо пустое множество.
б) Докажите, что при инверсии окружности и прямые переходят в окружности и прямые. Существует ли треугольник, градусная мера каждого угла которого выражается простым числом? В треугольнике ABC высота AH проходит через середину медианы BM. Можно ли расположить 12 одинаковых монет вдоль стенок большой квадратной коробки так, чтобы вдоль каждой стенки лежало ровно 100 фишек выставлены в ряд. Разрешено менять местами две фишки, стоящие через одну фишку. Пусть a, b, c, d — комплексные числа, причем углы a0b и c0d равны
и противоположно ориентированы. Докажите, что тогда
Полтора землекопа выкопали за полтора часа полторы ямы. Сколько ям выкопают два землекопа за два часа? Окружность разделена точками A, B, C, D так, что ⌣AB : ⌣BC : ⌣CD : ⌣DA = 2 : 3 : 5 : 6.
Проведены хорды AC и BD, пересекающиеся в точке M. Известно, что 35! = 10333147966386144929*66651337523200000000. Найдите цифру, заменённую звездочкой. В шестиугольнике равны углы, три главные диагонали равны между собой и шесть остальных диагоналей также равны между собой. Окружность, построенная на биссектрисе AD треугольника ABC как на диаметре, пересекает стороны AB и AC соответственно в точках M и N, отличных от A. Докажите, что AM = AN. Яблоко плавает на воде так, что 1/5 часть яблока находится над водой, а 4/5 – под водой. Под водой яблоко начинает есть рыбка со скоростью 120 г/мин., одновременно над водой яблоко начинает есть птичка со скоростью 60 г/мин. Какая часть яблока достанется рыбке, а какая – птичке? На сторонах BC, CA и AB остроугольного треугольника ABC взяты точки A1, B1 и C1. Докажите, что
2(B1C1cos
В равнобедренном треугольнике АВС угол В равен 30°, АВ = ВС = 6. Проведены высота CD треугольника АВС и высота DE треугольника BDC. |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 7958]
Существует ли треугольник, градусная мера каждого угла которого выражается простым числом?
Запишите несколько раз подряд число 2013 так, чтобы получившееся число делилось на 9.
Найдите сумму цифр в десятичной записи числа 412·521.
В равнобедренном треугольнике АВС угол В равен 30°, АВ = ВС = 6. Проведены высота CD треугольника АВС и высота DE треугольника BDC.
Вася сложил четвёртую степень и квадрат некоторого числа, отличного от нуля, и сообщил результат Пете.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 7958]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке