Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

В некотором лесу расстояние между каждыми двумя деревьями не превосходит разности их высот. Все деревья имеют высоту меньше 100 м.
Докажите, что этот лес можно огородить забором длиной 200 м.

Вниз   Решение


Можно ли на плоскости расположить 1000 отрезков так, чтобы каждый отрезок обоими концами упирался строго внутрь других отрезков?

ВверхВниз   Решение


Две окружности касаются в точке A. К ним проведена общая (внешняя) касательная, касающаяся окружностей в точках C и B. Докажите, что  $ \angle$CAB = 90o.

ВверхВниз   Решение


В равностороннем (неправильном) пятиугольнике ABCDE угол ABC вдвое больше угла DBE. Найдите величину угла ABC.

ВверхВниз   Решение


Докажите, что:
а)  ma2 = (2b2 + 2c2 - a2)/4;
б)  ma2 + mb2 + mc2 = 3(a2 + b2 + c2)/4.

ВверхВниз   Решение


Автор: Фольклор

Докажите, что существует бесконечно много простых чисел.

ВверхВниз   Решение


Докажите тождество: 1 + 3 + 5 +...+ (2n – 1) = n2.

ВверхВниз   Решение


Докажите, что замкнутую ломаную длины 1 можно поместить в круг радиуса 0, 25.

ВверхВниз   Решение


Может ли бильярдный шар, отразившись поочередно от двух соседних сторон прямоугольного бильярдного стола, прийти в исходную точку?

ВверхВниз   Решение


У Насти есть пять одинаковых с виду монет, среди которых три настоящие – весят одинаково – и две фальшивые: одна тяжелее настоящей, а вторая на столько же легче настоящей. Эксперт по просьбе Насти сделает на двухчашечных весах без гирь три взвешивания, которые она укажет, после чего сообщит Насте результаты. Может ли Настя выбрать взвешивания так, чтобы по их результатам гарантированно определить обе фальшивые монеты и указать, какая из них более тяжёлая, а какая более лёгкая?

ВверхВниз   Решение


При каких натуральных  n > 1  найдутся такие различные натуральные числа a1, a2, ..., an, что сумма   a1/a2 + a2/a3 + an/a1   – целое число?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 65830  (#1)

Темы:   [ Уравнения в целых числах ]
[ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

При каких натуральных  n > 1  найдутся такие различные натуральные числа a1, a2, ..., an, что сумма   a1/a2 + a2/a3 + an/a1   – целое число?

Прислать комментарий     Решение

Задача 65826  (#2)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Соображения непрерывности ]
Сложность: 4-
Классы: 8,9,10,11

По краю многоугольного стола ползут два муравья. Все стороны стола длиннее 1 м, а расстояние между муравьями всегда ровно 10 см. Сначала оба муравья находятся на одной из сторон стола.
  a) Пусть стол выпуклый. Всегда ли муравьи смогут проползти по краю стола так, чтобы в каждой точке края побывал каждый из муравьев?
  б) Пусть стол не обязательно выпуклый. Всегда ли муравьи смогут проползти по краю стола так, чтобы на краю не осталось точек, в которых не побывал ни один из муравьев?

Прислать комментарий     Решение

Задача 65825  (#3)

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Принцип крайнего (прочее) ]
[ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 4-
Классы: 7,8,9,10,11

На каждой клетке шахматной доски вначале стоит по ладье. Каждым ходом можно снять с доски ладью, которая бьет нечётное число ладей. Какое наибольшее число ладей можно снять? (Ладьи бьют друг друга, если они стоят на одной вертикали или горизонтали и между ними нет других ладей.)

Прислать комментарий     Решение

Задача 65833  (#4)

Темы:   [ Разбиения на пары и группы; биекции ]
[ Принцип крайнего (прочее) ]
[ Алгебраические неравенства (прочее) ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 9,10,11

На окружности расставлено несколько положительных чисел, каждое из которых не больше 1. Докажите, что можно разделить окружность на три дуги так, что суммы чисел на соседних дугах будут отличаться не больше чем на 1. (Если на дуге нет чисел, то сумма на ней считается равной нулю.)

Прислать комментарий     Решение

Задача 115624  (#5)

Темы:   [ Поворот помогает решить задачу ]
[ Правильные многоугольники ]
[ Вспомогательные равные треугольники ]
[ Отношение, в котором биссектриса делит сторону ]
[ Теорема синусов ]
[ Тождественные преобразования (тригонометрия) ]
Сложность: 4
Классы: 8,9

Дан треугольник ABC, AA1, BB1 и CC1 – его биссектрисы. Известно, что величины углов A, B и C относятся как  4 : 2 : 1.  Докажите, что  A1B1 = A1C1.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .