Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Из центра окружности выходят N векторов, концы которых делят её на N равных дуг. Некоторые векторы синие, остальные – красные. Подсчитаем сумму углов "красный вектор – синий вектор" (каждый угол вычисляется от красного вектора к синему против часовой стрелки) и разделим её на общее число всех таких углов. Докажите, что полученная величина "среднего угла" равна 180°.

Вниз   Решение


Арбуз имеет форму шара диаметра 20 см. Вася сделал длинным ножом три взаимно перпендикулярных плоских надреза глубиной h (надрез – это сегмент круга, h – высота сегмента, плоскости надрезов попарно перпендикулярны). Обязательно ли при этом арбуз разделится хотя бы на два куска, если
  а)  h = 17 см;
  б)  h = 18 см?

ВверхВниз   Решение


Углы AOB и COD совмещаются поворотом так, что луч OA совмещается с лучом OC, а луч OB – с OD. В них вписаны окружности, пересекающиеся в точках E и F. Доказать, что углы AOE и DOF равны.

ВверхВниз   Решение


Для турнира изготовили 7 золотых, 7 серебряных и 7 бронзовых медалей. Все медали из одного металла должны весить одинаково, а из разных должны иметь различные массы. Но одна из всех медалей оказалась нестандартной – имела неправильную массу. При этом нестандартная золотая медаль может весить только меньше стандартной золотой, бронзовая – только больше стандартной бронзовой, а серебряная может отличаться по весу от стандартной серебряной в любую сторону. Можно ли за три взвешивания на чашечных весах без гирь найти нестандартную медаль?

ВверхВниз   Решение


Клетчатый квадрат 2×2 накрыт двумя треугольниками. Обязательно ли
  а) хоть одна из четырёх его клеток целиком накрыта одним из этих треугольников;
  б) в один из этих треугольников можно поместить квадрат со стороной 1?

ВверхВниз   Решение


Натуральные числа от 1 до 100 раскрашены в три цвета: 50 чисел – в красный, 25 чисел – в жёлтый и 25 – в зелёный. Известно, что все красные и жёлтые числа можно разбить на 25 троек так, чтобы в каждой тройке было два красных числа и одно жёлтое, которое больше одного красного и меньше другого. Аналогичное утверждение верно для красных и зелёных чисел. Обязательно ли все 100 чисел можно разбить на 25 четвёрок, в каждой из которых два красных числа, одно жёлтое и одно зелёное, при этом жёлтое и зелёное числа лежат между красными?

ВверхВниз   Решение


n школьников хотят разделить поровну m одинаковых шоколадок, при этом каждую шоколадку можно разломить не более одного раза.
  а) При каких n это возможно, если   m = 9?
  б) При каких n и m это возможно?

ВверхВниз   Решение


Дан клетчатый квадрат $n\times n$, где  $n$ > 1.  Кроссвордом будем называть любое непустое множество его клеток, а словом – любую горизонтальную и любую вертикальную полоску (клетчатый прямоугольник шириной в одну клетку), целиком состоящую из клеток кроссворда и не содержащуюся ни в какой большей полоске из клеток кроссворда (ни горизонтальной, ни вертикальной). Пусть $x$ – количество слов в кроссворде, $y$ – наименьшее количество слов, которыми можно покрыть кроссворд. Найдите максимум отношения $\frac{x}{y}$ при данном $n$.

ВверхВниз   Решение


На сферической планете с длиной экватора 1 планируют проложить N кольцевых дорог, каждая из которых будет идти по окружности длины 1. Затем по каждой дороге запустят несколько поездов. Все поезда будут ездить по дорогам с одной и той же положительной постоянной скоростью, никогда не останавливаясь и не сталкиваясь. Какова в таких условиях максимально возможная суммарная длина всех поездов? Поезда считайте дугами нулевой толщины, из которых выброшены концевые точки. Решите задачу в случаях:  а)  N = 3;  б)  N = 4.

ВверхВниз   Решение


Дано иррациональное число α,  0 < α < ½.  По нему определяется новое число α1 как меньшее из двух чисел 2α и  1 – 2α.  По этому числу аналогично определяется α2, и так далее.
  а) Докажите, что  αn < 3/16  для некоторого n .
  б) Может ли случиться, что  αn > 7/40  при всех натуральных n?

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 [Всего задач: 45]      



Задача 109198

Темы:   [ Комбинаторика орбит ]
[ Классическая комбинаторика (прочее) ]
[ Геометрические интерпретации в алгебре ]
[ Разбиения на пары и группы; биекции ]
[ Доказательство от противного ]
Сложность: 5-
Классы: 9,10,11

Скажем, что колода из 52 карт сложена правильно, если каждая пара лежащих рядом карт совпадает по масти или достоинству, то же верно для верхней и нижней карты, и наверху лежит туз пик. Докажите, что число способов сложить колоду правильно
  а) делится на 12!;
  б) делится на 13!.

Прислать комментарий     Решение

Задача 109199

Темы:   [ Алгебраические неравенства (прочее) ]
[ Исследование квадратного трехчлена ]
[ Неравенство Иенсена ]
[ Выпуклость и вогнутость (прочее) ]
[ Теоремы о среднем значении ]
[ Неравенство Коши ]
Сложность: 5-
Классы: 8,9,10

Положительные числа х1, ..., хk удовлетворяют неравенствам  
  а) Докажите, что  k > 50.
  б) Построить пример таких чисел для какого-нибудь k.
  в) Найти минимальное k, для которого пример возможен.

Прислать комментарий     Решение

Задача 109499

Темы:   [ Точка Торричелли ]
[ Симметрия помогает решить задачу ]
[ Свойства биссектрис, конкуррентность ]
[ Свойства симметрий и осей симметрии ]
[ Три прямые, пересекающиеся в одной точке ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
[ Изогональное сопряжение ]
Сложность: 5-
Классы: 9,10,11

Стороны треугольника ABC видны из точки T под углами 120°.
Докажите, что прямые, симметричные прямым AT, BT и CT относительно прямых BC, CA и AB соответственно, пересекаются в одной точке.

Прислать комментарий     Решение

Задача 109505

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Общие четырехугольники ]
[ Углы между биссектрисами ]
[ Векторы помогают решить задачу ]
[ Вспомогательная окружность ]
[ Средняя линия треугольника ]
[ Правильный (равносторонний) треугольник ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Вписанный угол равен половине центрального ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 5-
Классы: 8,9,10

В четырёхугольнике ABCD стороны AB, BC и CD равны, M – середина стороны AD. Известно, что  ∠BMC = 90°.
Найдите угол между диагоналями четырёхугольника ABCD.

Прислать комментарий     Решение

Задача 66202

Темы:   [ Рациональные и иррациональные числа ]
[ Итерации ]
[ Двоичная система счисления ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 5
Классы: 10,11

Дано иррациональное число α,  0 < α < ½.  По нему определяется новое число α1 как меньшее из двух чисел 2α и  1 – 2α.  По этому числу аналогично определяется α2, и так далее.
  а) Докажите, что  αn < 3/16  для некоторого n .
  б) Может ли случиться, что  αn > 7/40  при всех натуральных n?

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 [Всего задач: 45]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .