Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Можно ли расставить на листе клетчатой бумаги крестики и нолики так, чтобы ни на одной горизонтали, вертикали и диагонали нельзя было встретить три одинаковых знака подряд?

Вниз   Решение


На рёбрах произвольного тетраэдра выбрано по точке. Через каждую тройку точек, лежащих на рёбрах с общей вершиной, проведена плоскость. Докажите, что если три из четырёх проведённых плоскостей касаются вписанного в тетраэдр шара, то и четвёртая плоскость также его касается.

ВверхВниз   Решение


Из шахматной доски $8\times8$ вырезали 10 клеток. Известно, что среди вырезанных клеток есть как черные, так и белые. Какое наибольшее количество двухклеточных прямоугольников можно после этого гарантированно вырезать из этой доски?

ВверхВниз   Решение


Автор: Анджанс А.

Ищутся такие натуральные числа, оканчивающиеся на 5, что в их десятичной записи цифры монотонно не убывают (то есть каждая цифра, начиная со второй, не меньше предыдущей цифры), и в десятичной записи их квадрата цифры тоже монотонно не убывают.
  а) Найдите четыре таких числа.
  б) Докажите, что таких чисел бесконечно много.

ВверхВниз   Решение


На двух сторонах AB и BC правильного 2n-угольника взято по точке K и N, причём угол KEN, где E – вершина, противоположная B, равен 180°/2n. Докажите, что NE – биссектриса угла KNC.

ВверхВниз   Решение


Найдите ГМТ X, из которых можно провести касательные к данной дуге AB окружности.

ВверхВниз   Решение


Пусть O — центр правильного треугольника ABC. Найдите ГМТ M, удовлетворяющих следующему условию: любая прямая, проведенная через точку M, пересекает либо отрезок AB, либо отрезок CO.

ВверхВниз   Решение


В маленьком зоопарке из клетки убежала обезьяна. Её ловят два сторожа. И сторожа, и обезьяна бегают только по дорожкам. Всего в зоопарке шесть прямолинейных дорожек: три длинные образуют правильный треугольник, три короткие соединяют середины его сторон. В каждый момент времени обезьяна и сторожа видят друг друга. Смогут ли сторожа поймать обезьяну, если обезьяна бегает в 3 раза быстрее сторожей? (Вначале оба сторожа находятся в одной вершине треугольника, а обезьяна в другой.)

ВверхВниз   Решение


Через точку M пересечения медиан треугольника ABC проведена прямая, пересекающая прямые BC, CA и AB в точках A1, B1 и C1. Докажите, что (1/$ \overline{MA_1}$) + (1/$ \overline{MB_1}$) + (1/$ \overline{MC_1}$) = 0 (отрезки MA1, MB1 и MC1 считаются ориентированными).

ВверхВниз   Решение


Автор: Насыров З.

Круг поделили хордой AB на два круговых сегмента и один из них повернули на некоторый угол вокруг точки A. При этом повороте точка B перешла в точку D (см. рис.).

Докажите, что отрезки, соединяющие середины дуг сегментов с серединой отрезка BD, перпендикулярны друг другу.

ВверхВниз   Решение


Докажите, что если произведение двух положительных чисел больше их суммы, то сумма больше 4.

ВверхВниз   Решение


Автор: Лысов Ю.П.

На окружности расположено множество F точек, состоящее из 100 дуг. При любом повороте R окружности множество R(F) имеет хотя бы одну общую точку с множеством F. (Другими словами, для любого угла α от 0° до 180° в множестве F можно указать две точки, отстоящие одна от другой на угол α.) Какую наименьшую сумму длин могут иметь 100 дуг, образующих множество F? Каков будет ответ, если дуг не 100, а n?

ВверхВниз   Решение


На плоскости даны два непересекающихся круга. Обязательно ли найдется точка M, лежащая вне этих кругов, удовлетворяющая такому условию: каждая прямая, проходящая через точку M, пересекает хотя бы один из этих кругов?
Найдите ГМТ M, удовлетворяющих такому условию.

ВверхВниз   Решение


Автор: Фольклор

Существует ли такая непериодическая функция $f$, определённая на всей числовой прямой, что при любом $x$ выполнено равенство $f(x + 1)=f(x + 1)f(x)+1?$

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 66568  (#1)

Тема:   [ Теория чисел. Делимость ]
Сложность: 3
Классы: 8,9,10,11

Приведите пример числа, делящегося на 2020, в котором каждая из десяти цифр встречается одинаковое количество раз.
Прислать комментарий     Решение


Задача 66569  (#2)

Тема:   [ Периодичность и непериодичность ]
Сложность: 3
Классы: 8,9,10,11

Автор: Фольклор

Существует ли такая непериодическая функция $f$, определённая на всей числовой прямой, что при любом $x$ выполнено равенство $f(x + 1)=f(x + 1)f(x)+1?$
Прислать комментарий     Решение


Задача 66559  (#3)

Тема:   [ Треугольники (прочее) ]
Сложность: 4
Классы: 8,9,10

Автор: Соколов А.

В остроугольном треугольнике $ABC$ ($AB$<$BC$) провели высоту $BH$. Точка $P$ симметрична точке $H$ относительно прямой, соединяющей середины сторон $AC$ и $BC$. Докажите, что прямая $BP$ содержит центр описанной окружности треугольника $ABC$.
Прислать комментарий     Решение


Задача 66571  (#4)

Темы:   [ Замощения костями домино и плитками ]
[ Разрезания, разбиения, покрытия и замощения ]
Сложность: 3
Классы: 9,10,11

Из шахматной доски $8\times8$ вырезали 10 клеток. Известно, что среди вырезанных клеток есть как черные, так и белые. Какое наибольшее количество двухклеточных прямоугольников можно после этого гарантированно вырезать из этой доски?
Прислать комментарий     Решение


Задача 66572  (#5)

Темы:   [ Стереометрия (прочее) ]
[ Достроение тетраэдра до параллелепипеда ]
[ Сечения, развертки и остовы (прочее) ]
Сложность: 4
Классы: 9,10,11

Существует ли тетраэдр, в сечениях которого двумя разными плоскостями получаются квадраты $100\times100$ и $1\times1$?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .