ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
года:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Постройте окружность, проходящую через данную точку A и касающуюся данной прямой в данной точке B.
Царь пообещал награду тому, кто сможет на каменистом пустыре посадить красивый фруктовый сад. Об этом узнали два брата. Старший смог выкопать 18 ям (см. рис. слева). Больше нигде не удалось, только все лопаты сломал. Царь рассердился и посадил его в темницу. Тогда младший брат Иван предложил разместить яблони, груши и сливы в вершинах равных треугольников (см. рис. справа), а остальные ямы засыпать.
На каждой стороне прямоугольного треугольника построено по квадрату (пифагоровы штаны), и вся фигура вписана в круг. Для каких прямоугольных треугольников это можно сделать? Число 4 обладает тем свойством, что при делении его на q² остаток получается меньше q²/2, каково бы ни было q.
С помощью циркуля и линейки постройте треугольник по углу, высоте и биссектрисе, проведённым из вершины этого угла.
Фокусник научил Каштанку лаять столько раз, сколько он ей тайком от публики покажет. Когда Каштанка таким способом правильно ответила, сколько будет дважды два, он спрятал вкусный кекс в чемодан с кодовым замком и сказал: — Восьмизначный код от чемодана — решение ребуса УЧУЙ = КЕ × КС. Надо заменить одинаковые буквы одинаковыми цифрами, а разные разными так, чтобы получилось верное равенство. Пролай нужное число раз на каждую из восьми букв, и получишь угощение. Но тут случился конфуз. Каштанка от волнения на каждую букву лаяла на 1 раз больше, чем надо. Конечно, чемодан не открылся. Вдруг раздался детский голос: «Нечестно! Собака правильно решила ребус!» И действительно, если каждую цифру решения, которое имел в виду фокусник, увеличить на 1, получится ещё одно решение ребуса! Можно ли восстановить: а) какое именно решение имел в виду фокусник; б) чему равнялось число УЧУЙ в этом решении? Чему равна максимальная разность между соседними числами из числа тех, сумма цифр которых делится на 7?
Пусть c — наибольшая сторона треугольника со сторонами a, b, c. Докажите, что если a2 + b2 > c2, то треугольник остроугольный, а если a2 + b2 < c2, — тупоугольный.
На плоскости даны две перпендикулярные прямые. С помощью кронциркуля укажите на плоскости три точки, являющиеся вершинами равностороннего треугольника. Кронциркуль — это инструмент, похожий на циркуль, но на концах у него две иголки. Он позволяет переносить одинаковые расстояния, но не позволяет рисовать (процарапывать) окружности, дуги окружностей и делать засечки. Пусть f(x) - некоторый многочлен, про который известно, что уравнение f(x)=x не имеет корней. Докажите, что тогда и уравнение f(f(x))=x не имеет корней. Основание правильной треугольной пирамиды расположено в грани куба, одна из сторон основания совпадает с ребром куба, а вершина пирамиды лежит в противоположной грани куба. Найдите угол боковой грани пирамиды с плоскостью её основания. Вершины пирамиды KLMN расположены в точках пересечения медиан граней некоторой правильной треугольной пирамиды со стороной основания a и боковым ребром b . Найдите полную поверхность пирамиды KLMN . Числа a и b таковы, что первое уравнение системы
имеет ровно два решения. Докажите, что система имеет хотя бы одно решение. В турнире по волейболу, прошедшем в один круг, 20% всех команд не выиграли ни одной игры. Сколько было команд? Высота правильной четырёхугольной пирамиды равна 8, апофема пирамиды равна 10. Найдите расстояние между диагональю основания и скрещивающимся с ней боковым ребром. Цифры от 0 до 9 зашифрованы буквами A, B, C, D, E, F, G, H, I, J в каком-то порядке. За один вопрос можно узнать зашифрованную запись суммы нескольких различных букв. Например, если спросить «А + B = ?», то в случае, когда A = 9, B = 1, C = 0, ответом будет «А + В = BC». Как можно за пять таких вопросов определить, какие буквы каким цифрам соответствуют? |
Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 393]
Фокусник научил Каштанку лаять столько раз, сколько он ей тайком от публики покажет. Когда Каштанка таким способом правильно ответила, сколько будет дважды два, он спрятал вкусный кекс в чемодан с кодовым замком и сказал: — Восьмизначный код от чемодана — решение ребуса УЧУЙ = КЕ × КС. Надо заменить одинаковые буквы одинаковыми цифрами, а разные разными так, чтобы получилось верное равенство. Пролай нужное число раз на каждую из восьми букв, и получишь угощение. Но тут случился конфуз. Каштанка от волнения на каждую букву лаяла на 1 раз больше, чем надо. Конечно, чемодан не открылся. Вдруг раздался детский голос: «Нечестно! Собака правильно решила ребус!» И действительно, если каждую цифру решения, которое имел в виду фокусник, увеличить на 1, получится ещё одно решение ребуса! Можно ли восстановить: а) какое именно решение имел в виду фокусник; б) чему равнялось число УЧУЙ в этом решении?
Дан правильный треугольник ABC. На стороне AB отмечена точка K, на стороне BC — точки L и M (L лежит на отрезке BM) так, что KL = KM, BL = 2, AK = 3. Найдите CM.
Цифры от 0 до 9 зашифрованы буквами A, B, C, D, E, F, G, H, I, J в каком-то порядке. За один вопрос можно узнать зашифрованную запись суммы нескольких различных букв. Например, если спросить «А + B = ?», то в случае, когда A = 9, B = 1, C = 0, ответом будет «А + В = BC». Как можно за пять таких вопросов определить, какие буквы каким цифрам соответствуют?
Лабиринт для мышей (см. рисунок) представляет собой квадрат 5 × 5 метров, мыши могут бегать только по дорожкам. На двух перекрёстках положили по одинаковому куску сыра (обозначены крестиками). На другом перекрёстке сидит мышка (обозначена кружочком). Она чует, где сыр, но до обоих кусочков ей нужно пробежать одинаковое расстояние. Поэтому она не знает, какой кусочек выбрать, и задумчиво сидит на месте. а) Отметьте ещё пять перекрёстков, где могла бы задумчиво сидеть мышка (откуда до обоих кусочков сыра ей нужно пробежать одинаковое расстояние). б) Придумайте, на каких двух перекрёстках можно положить по куску сыра так, чтобы подходящих для задумчивой мышки перекрёстков оказалось как можно больше. (Доказательство максимальности от участников не требовалось)
Аня называет дату красивой, если все 6 цифр её записи различны. Например, 19.04.23 — красивая дата, а 19.02.23 и 01.06.23 — нет. А сколько всего красивых дат в 2023 году?
Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 393]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке