ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Годы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В остроугольном треугольнике $ABC$ проведена биссектриса $AL$. На продолжении отрезка $LA$ за точку $A$ выбрана точка $K$ так, что $AK = AL$. Описанные окружности треугольников $BLK$ и $CLK$ пересекают отрезки $AC$ и $AB$ в точках $P$ и $Q$ соответственно. Докажите, что прямые $PQ$ и $BC$ параллельны. |
Страница: << 183 184 185 186 187 188 189 >> [Всего задач: 1982]
Числа a и b таковы, что первое уравнение системы
имеет ровно два решения. Докажите, что система имеет хотя бы одно решение.
Числа a и b таковы, что первое уравнение системы
имеет ровно два решения. Докажите, что система имеет хотя бы одно решение.
Шеренга новобранцев стояла лицом к сержанту. По команде "налево" некоторые повернулись налево, некоторые - направо, а остальные - кругом. Всегда ли сержант сможет встать в строй так, чтобы с обеих сторон от него оказалось поровну новобранцев, стоящих к нему лицом?
В магазине три этажа, перемещаться между которыми можно только на лифте. Исследование посещаемости этажей магазина показало, что с начала рабочего дня и до закрытия магазина:
Девять одинаковых по виду монет расположены по кругу. Пять из них настоящие, а четыре — фальшивые. Никакие две фальшивые монеты не лежат рядом. Настоящие монеты весят одинаково, и фальшивые — одинаково (фальшивая монета тяжелее настоящей). Как за два взвешивания на чашечных весах без гирь определить все фальшивые монеты?
Страница: << 183 184 185 186 187 188 189 >> [Всего задач: 1982]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке