ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

На боковых сторонах $AB$ и $BC$ равнобедренного треугольника $ABC$ отмечены точки $D$ и $E$ так, что $\angle BED = 3\angle BDE$. Точка $D'$ симметрична точке $D$ относительно прямой $AC$. Докажите, что прямая $D'E$ проходит через точку пересечения биссектрис треугольника $ABC$.

Вниз   Решение


Докажите теорему Чевы (задача 4.48, б)) с помощью группировки масс.

ВверхВниз   Решение


Автор: Лифшиц Ю.

На плоскости отмечено 6 красных, 6 синих и 6 зеленых точек, причем никакие три из отмеченных точек не лежат на одной прямой. Докажите, что сумма площадей треугольников с вершинами одного цвета составляет не более четверти суммы площадей всех треугольников с отмеченными вершинами.

ВверхВниз   Решение


Докажите, что  x4 + y4 + 8 ≥ 8xy  при любых x и y.

ВверхВниз   Решение


а) Разбейте отрезок  [0, 1]  на чёрные и белые отрезки так, чтобы для любого многочлена p(x) степени не выше второй сумма приращений p(x) по всем чёрным отрезкам равнялась сумме приращений p(x) по всем белым интервалам.
(Приращением многочлена p по отрезку  (a, b)  называется число  p(b) – p(a).)

б) Удастся ли проделать аналогичную операцию для всех многочленов степени не выше 1995?

 

ВверхВниз   Решение


Дан вписанный четырехугольник $ABCD$. На сторонах $AD$ и $CD$ взяты точки $E$ и $F$ так, что $AE=BC$ и $AB=CF$. Пусть $M$ – середина $EF$. Докажите, что угол $AMC$ прямой.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 67208

Темы:   [ Средняя линия трапеции ]
[ Угол между касательной и хордой ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 8,9,10

Автор: Мухин Д.Г.

Окружность касается боковых сторон трапеции $ABCD$ в точках $B$ и $C$, а её центр лежит на $AD$. Докажите, что диаметр окружности меньше средней линии трапеции.
Прислать комментарий     Решение


Задача 67210

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Симметрия помогает решить задачу ]
[ Вспомогательные равные треугольники ]
Сложность: 4-
Классы: 8,9,10,11

Дан вписанный четырехугольник $ABCD$. На сторонах $AD$ и $CD$ взяты точки $E$ и $F$ так, что $AE=BC$ и $AB=CF$. Пусть $M$ – середина $EF$. Докажите, что угол $AMC$ прямой.
Прислать комментарий     Решение


Задача 67214

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вписанный угол, опирающийся на диаметр ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Губанов С.

Про треугольник $ABC$ известно, что точка, симметричная ортоцентру относительно центра описанной окружности, лежит на стороне $BC$. Пусть $A_1$ – основание высоты, проведенной из точки $A$. Докажите, что $A_1$ лежит на окружности, проходящей через середины трёх высот треугольника $ABC$.
Прислать комментарий     Решение


Задача 67226

Темы:   [ Ортоцентр и ортотреугольник ]
[ Четыре точки, лежащие на одной окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4-
Классы: 8,9,10,11

Дан вписанный четырёхугольник $ABCD$. Пусть $M_{ac}$ – середина диагонали $AC$; $H_d$, $H_b$ – ортоцентры треугольников $ABC$, $ADC$ соответственно; $P_d$, $P_b$ – проекции $H_d$ и $H_b$ на $BM_{ac}$ и $DM_{ac}$ соответственно. Аналогично определим $P_a$, $P_c$ для диагонали $BD$. Докажите, что $P_a$, $P_b$, $P_c$, $P_d$ лежат на одной окружности.
Прислать комментарий     Решение


Задача 67209

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 4
Классы: 8,9,10,11

На боковых сторонах $AB$ и $BC$ равнобедренного треугольника $ABC$ отмечены точки $D$ и $E$ так, что $\angle BED = 3\angle BDE$. Точка $D'$ симметрична точке $D$ относительно прямой $AC$. Докажите, что прямая $D'E$ проходит через точку пересечения биссектрис треугольника $ABC$.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .