Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Автор: Губанов С.

Про треугольник ABC известно, что точка, симметричная ортоцентру относительно центра описанной окружности, лежит на стороне BC. Пусть A1 – основание высоты, проведенной из точки A. Докажите, что A1 лежит на окружности, проходящей через середины трёх высот треугольника ABC.

Вниз   Решение


Разрежем на четыре части. Разрежьте каждую из фигур на четыре равные части (резать можно по сторонам и диагоналям клеток).


ВверхВниз   Решение


У двух человек было два квадратных торта. Каждый сделал на своем торте по 2 прямолинейных разреза от края до края. При этом у одного получилось три куска, а у другого — четыре. Как это могло быть?

ВверхВниз   Решение


В клетках доски  n×n  произвольно расставлены числа от 1 до n². Докажите, что найдутся две такие соседние клетки (имеющие общую вершину или общую сторону), что стоящие в них числа отличаются не меньше чем на  n + 1.

ВверхВниз   Решение


В распоряжении юного паркетчика имеется 10 одинаковых плиток, каждая из которых состоит из 4 квадратов и имеет форму буквы Г (все плитки ориентированы одинаково). Может ли он составить из них прямоугольник размером 5×8? (Плитки можно поворачивать, но нельзя переворачивать. Например, на рисунке изображено неверное решение: заштрихованная плитка неправильно ориентирована.)

ВверхВниз   Решение


AK – биссектриса треугольника ABC, P и Q – точки на двух других биссектрисах (или на их продолжениях) такие, что  PA = PK  и  QA = QK.
Докажите, что  ∠PAQ = 90° – ½ ∠A.

ВверхВниз   Решение


Снегирь. Итак, мама воскликнула — «Чудеса!», и сразу же мама, папа и дети отправились в зоомагазин. «Но здесь больше пятидесяти снегирей, как мы выберем», — чуть не заплакал младший брат, увидев снегирей. «Не волнуйся», — сказал старший, — «их меньше пятидесяти». «Главное,» — сказала мама, — «что здесь есть хотя бы один!» «Да, забавно,» — подытожил папа, — «из трех ваших фраз только одна соответствует действительности». Сможете ли Вы сказать, сколько снегирей было в магазине, зная, что снегиря мне купили?

ВверхВниз   Решение


Дан вписанный четырехугольник ABCD. На сторонах AD и CD взяты точки E и F так, что AE=BC и AB=CF. Пусть M – середина EF. Докажите, что угол AMC прямой.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 67208

Темы:   [ Средняя линия трапеции ]
[ Угол между касательной и хордой ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 8,9,10

Автор: Мухин Д.Г.

Окружность касается боковых сторон трапеции ABCD в точках B и C, а её центр лежит на AD. Докажите, что диаметр окружности меньше средней линии трапеции.
Прислать комментарий     Решение


Задача 67210

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Симметрия помогает решить задачу ]
[ Вспомогательные равные треугольники ]
Сложность: 4-
Классы: 8,9,10,11

Дан вписанный четырехугольник ABCD. На сторонах AD и CD взяты точки E и F так, что AE=BC и AB=CF. Пусть M – середина EF. Докажите, что угол AMC прямой.
Прислать комментарий     Решение


Задача 67214

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вписанный угол, опирающийся на диаметр ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Губанов С.

Про треугольник ABC известно, что точка, симметричная ортоцентру относительно центра описанной окружности, лежит на стороне BC. Пусть A1 – основание высоты, проведенной из точки A. Докажите, что A1 лежит на окружности, проходящей через середины трёх высот треугольника ABC.
Прислать комментарий     Решение


Задача 67226

Темы:   [ Ортоцентр и ортотреугольник ]
[ Четыре точки, лежащие на одной окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4-
Классы: 8,9,10,11

Дан вписанный четырёхугольник ABCD. Пусть Mac – середина диагонали AC; Hd, Hb – ортоцентры треугольников ABC, ADC соответственно; Pd, Pb – проекции Hd и Hb на BMac и DMac соответственно. Аналогично определим Pa, Pc для диагонали BD. Докажите, что Pa, Pb, Pc, Pd лежат на одной окружности.
Прислать комментарий     Решение


Задача 67209

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 4
Классы: 8,9,10,11

На боковых сторонах AB и BC равнобедренного треугольника ABC отмечены точки D и E так, что BED=3BDE. Точка D симметрична точке D относительно прямой AC. Докажите, что прямая DE проходит через точку пересечения биссектрис треугольника ABC.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .