ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Доказать, что любой несамопересекающийся пятиугольник лежит по одну сторону от хотя бы одной своей стороны. Каждая из девяти прямых разбивает квадрат на два четырёхугольника, площади которых относятся как Периметр выпуклого четырехугольника равен 4.
Докажите, что его площадь не превосходит 1.
Дан многочлен x(x + 1)(x + 2)(x + 3). Найти его наименьшее значение. Из листа клетчатой бумаги размером 29×29 клеточек вырезали 99 квадратиков
2×2 (режут по линиям). Натуральное число A при делении на 1981 дало в остатке 35, при делении на 1982 оно дало в остатке также 35. Каков остаток от деления числа A на 14? Найдите все натуральные числа, не представимые в виде разности квадратов каких-либо натуральных чисел. На продолжениях сторон CA и AB треугольника ABC за точки A и B соответственно отложены отрезки AE = BC и BF = AC. Окружность касается отрезка BF в точке N, стороны BC и продолжения стороны AC за точку C. Точка M – середина отрезка EF. Докажите, что прямая MN параллельна биссектрисе угла A. Пусть ABCD — выпуклый четырехугольник, причем
AB + BD В неравнобедренном треугольнике ABC проведены высота из вершины A и биссектрисы из двух других вершин. На хоккейном поле лежат три шайбы А, В и С.
Хоккеист бьёт по одной из них так, что она пролетает между двумя другими. Внутри прямоугольника ABCD взята точка M. Докажите, что
существует выпуклый четырехугольник с перпендикулярными диагоналями
длины AB и BC, стороны которого равны AM, BM, CM, DM.
Доказать, что произведение четырех последовательных целых чисел в сумме с единицей даёт полный квадрат. Через точку P, лежащую вне окружности, проводятся всевозможные прямые, пересекающие эту окружность. Найти множество середин хорд, отсекаемых окружностью на этих прямых. |
Страница: 1 [Всего задач: 5]
Построить треугольник по высоте и медиане, выходящим из одной вершины, и радиусу описанного круга.
Дописать к 523... три цифры так, чтобы полученное шестизначное число делилось на 7, 8 и 9.
Дан четырёхугольник; A, B, C, D — последовательные середины его сторон, P, Q — середины диагоналей. Доказать, что треугольник BCP равен треугольнику ADQ.
Через точку P, лежащую вне окружности, проводятся всевозможные прямые, пересекающие эту окружность. Найти множество середин хорд, отсекаемых окружностью на этих прямых.
Доказать, что произведение четырех последовательных целых чисел в сумме с единицей даёт полный квадрат.
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке