ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что

$\displaystyle \left\vert\vphantom{ \frac{x-y}{1-xy}}\right.$$\displaystyle {\frac{x-y}{1-xy}}$$\displaystyle \left.\vphantom{ \frac{x-y}{1-xy}}\right\vert$ < 1,

если | x| < 1 и | y| < 1.

   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 1957]      



Задача 77918

Темы:   [ Алгебраические неравенства (прочее) ]
[ Перебор случаев ]
[ Разложение на множители ]
Сложность: 3-
Классы: 8,9

Докажите, что многочлен  x12x9 + x4x + 1  при всех значениях x положителен.

Прислать комментарий     Решение

Задача 77946

Тема:   [ Неравенства с модулями ]
Сложность: 3-
Классы: 10,11

Докажите, что

$\displaystyle \left\vert\vphantom{ \frac{x-y}{1-xy}}\right.$$\displaystyle {\frac{x-y}{1-xy}}$$\displaystyle \left.\vphantom{ \frac{x-y}{1-xy}}\right\vert$ < 1,

если | x| < 1 и | y| < 1.
Прислать комментарий     Решение

Задача 77980

Тема:   [ Четность и нечетность ]
Сложность: 3-
Классы: 8,9

В плоскости расположено 11 шестерёнок таким образом, что первая сцеплена со второй, вторая – с третьей, ..., одиннадцатая – с первой.
Могут ли они вращаться?

Прислать комментарий     Решение

Задача 77986

Тема:   [ Четность и нечетность ]
Сложность: 3-
Классы: 9

В плоскости расположено n зубчатых колёс таким образом, что первое колесо сцеплено своими зубцами со вторым, второе – с третьим и т.д. Наконец, последнее колесо сцеплено с первым. Могут ли вращаться колёса такой системы?

Прислать комментарий     Решение

Задача 77987

Тема:   [ Системы линейных уравнений ]
Сложность: 3-
Классы: 9

Решить систему
   x1 + 2x2 + 2x3 + ... + 2x100 = 1,
   x1 + 3x2 + 4x3 + ... + 4x100 = 2,
   x1 + 3x2 + 5x3 + ... + 6x100 = 3,
    ...
   x1 + 3x2 + 5x3 + ... + 199x100 = 100.

Прислать комментарий     Решение

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .