ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Существуют ли целые числа m и n, удовлетворяющие уравнению  m² + 1954 = n²?

   Решение

Задачи

Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 1957]      



Задача 77991

Темы:   [ Разные задачи на разрезания ]
[ Куб ]
Сложность: 3
Классы: 10,11

Разрезать куб на три равные пирамиды.
Прислать комментарий     Решение


Задача 77997

Темы:   [ Ребусы ]
[ Десятичная система счисления ]
[ Перебор случаев ]
Сложность: 3
Классы: 8,9

Определить четырёхзначное число, если деление этого числа на однозначное производится по следующей схеме:

  × × × ×  ×  
  × ×      ×××  
      × ×    
      × ×    
             

а деление этого же числа на другое однозначное производится по такой схеме:

  × × × ×  ×  
    ×      ×××  
    × ×      
      ×      
      × ×    
      × ×    
             

Прислать комментарий     Решение

Задача 77998

Темы:   [ Признаки делимости на 2 и 4 ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 8,9

Существуют ли целые числа m и n, удовлетворяющие уравнению  m² + 1954 = n²?

Прислать комментарий     Решение

Задача 77999

Темы:   [ Десятичная система счисления ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3
Классы: 8,9

Определить наибольшее значение отношения трёхзначного числа к числу, равному сумме цифр этого числа.

Прислать комментарий     Решение

Задача 78000

Темы:   [ Свойства разверток ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 9,10

Из квадрата размером 3 на 3 вырезать одну фигуру, которая представляет развёртку полной поверхности куба, длина ребра которого равна 1.
Прислать комментарий     Решение


Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .