ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 1957]      



Задача 77919

Темы:   [ Четырехугольник (неравенства) ]
[ Неравенства с углами ]
Сложность: 3
Классы: 8,9

У выпуклых четырёхугольников ABCD и A'B'C'D' соответственные стороны равны. Доказать, что если $ \angle$A > $ \angle$A', то $ \angle$B < $ \angle$B', $ \angle$C > $ \angle$C' и $ \angle$D < $ \angle$D'.
Прислать комментарий     Решение


Задача 77920

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Тождественные преобразования ]
Сложность: 3
Классы: 8,9

Что больше     или ?

Прислать комментарий     Решение

Задача 77921

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Симметрия помогает решить задачу ]
Сложность: 3
Классы: 8,9

Точка внутри равнобокой трапеции соединяется со всеми вершинами. Доказать, что из четырёх полученных отрезков можно сложить четырёхугольник, вписанный (Разрешается, чтобы вершины четырёхугольника лежали не только на сторонах трапеции, но и на их продолжениях — прим. ред.) в эту трапецию.
Прислать комментарий     Решение


Задача 77923

Тема:   [ Многоугольники (экстремальные свойства) ]
Сложность: 3
Классы: 10,11

Из всех выпуклых многоугольников, у которых одна сторона равна a и сумма внешних углов при вершинах, не прилегающих к этой стороне, равна 120o, выбрать многоугольник наибольшей площади.
Прислать комментарий     Решение


Задача 77924

Тема:   [ Приближения чисел ]
Сложность: 3
Классы: 10,11

Докажите, что первые три цифры частного     суть 0,239.

Прислать комментарий     Решение

Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .