ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 1957]      



Задача 77928

Темы:   [ Десятичная система счисления ]
[ Числовые неравенства. Сравнения чисел. ]
[ Формулы сокращенного умножения (прочее) ]
Сложность: 3
Классы: 8,9

Докажите, что число    не является кубом никакого целого числа.

Прислать комментарий     Решение

Задача 77930

Темы:   [ Степень вершины ]
[ Обход графов ]
[ Процессы и операции ]
Сложность: 3
Классы: 8,9

На консультации было 20 школьников и разбиралось 20 задач. Оказалось, что каждый из школьников решил две задачи и каждую задачу решили два школьника. Докажите, что можно так организовать разбор задач, чтобы каждый школьник рассказал одну из решённых им задач и все задачи были разобраны.

Прислать комментарий     Решение

Задача 77941

Темы:   [ Ортоцентр и ортотреугольник ]
[ Правильный (равносторонний) треугольник ]
[ Вписанный угол, опирающийся на диаметр ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 3
Классы: 9

Докажите, что если ортоцентр делит высоты треугольника в одном и том же отношении, то этот треугольник — правильный.
Прислать комментарий     Решение


Задача 77950

Темы:   [ Алгебраические неравенства (прочее) ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 3
Классы: 9,10

Докажите, что  2n > (1 – x)n + (1 + x)n  при целом  n ≥ 2  и  |x| < 1.

Прислать комментарий     Решение

Задача 77954

Темы:   [ Вписанные и описанные окружности ]
[ Касающиеся окружности ]
Сложность: 3
Классы: 8,9

Для выпуклого четырёхугольника ABCD соблюдено условие: AB + CD = BC + DA. Докажите, что окружность, вписанная в $ \Delta$ABC, касается окружности, вписанной в $ \Delta$ACD.
Прислать комментарий     Решение


Страница: << 43 44 45 46 47 48 49 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .