ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 1957]      



Задача 78062

Темы:   [ Ломаные ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 8,9

Имеется замкнутая самопересекающаяся ломаная. Известно, что она пересекает каждое свое звено ровно один раз. Докажите, что число звеньев чётно.

Прислать комментарий     Решение

Задача 78068

Темы:   [ Обыкновенные дроби ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3
Классы: 9,10,11

Пусть a, b, c, d, l – целые числа. Докажите, что если дробь     сократима на число k, то  ad – bc  делится на k.

Прислать комментарий     Решение

Задача 78069

Темы:   [ Числовые таблицы и их свойства ]
[ Средние величины ]
[ Доказательство от противного ]
Сложность: 3
Классы: 9,10

На клетчатой бумаге написана таблица, причём в каждой клетке стоит число, равное среднему арифметическому четырёх чисел, стоящих в соседних клетках. Все числа в таблице различны. Докажите, что наибольшее число стоит с края (то есть по крайней мере одна из соседних клеток отсутствует).

Прислать комментарий     Решение

Задача 78077

Темы:   [ Правильные многоугольники ]
[ Шестиугольники ]
[ Итерации ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Последовательности и ряды функций ]
Сложность: 3
Классы: 8,9

Точки A1, A2, A3, A4, A5, A6 делят окружность радиуса 1 на шесть равных частей. Из A1 провёден луч l1 в направлении A2, из A2 – луч l2 в направлении A3, ..., из A6 – луч l6 в направлении A1. Из точки B1, взятой на луче l1, опускается перпендикуляр на луч l6, из основания этого перпендикуляра опускается перпендикуляр на l5 и т. д. Основание шестого перпендикуляра совпало с B1. Найти отрезок B1A1.

Прислать комментарий     Решение

Задача 78094

Темы:   [ Целочисленные и целозначные многочлены ]
[ Свойства коэффициентов многочлена ]
[ Делимость чисел. Общие свойства ]
[ Кубические многочлены ]
Сложность: 3
Классы: 8,9

Известно, что  ax³ + bx² + cx + d,  где a, b, c, d – данные целые числа, при любом целом x делится на 5. Доказать, что все числа a, b, c, d делятся на 5.

Прислать комментарий     Решение

Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .