Страница:
<< 49 50 51 52
53 54 55 >> [Всего задач: 1957]
В прямоугольной таблице, составленной из положительных чисел, произведение
суммы чисел любого столбца на сумму чисел любой строки равно числу, стоящему
на их пересечении. Доказать, что сумма всех чисел в таблице равна единице.
От
A до
B 999 км. Вдоль дороги стоят километровые столбы, на которых написаны расстояния до
A и до
B:
,
, ...,
.
Сколько среди них таких, на которых имеются только две различные цифры?
|
|
Сложность: 3 Классы: 10,11
|
Школьник едет на олимпиаду на метро, платит рубль и получает сдачу. Доказать,
что если он обратно поедет на трамвае, то он сможет уплатить за проезд
без сдачи. (Проезд в метро стоил 50 коп., в трамвае – 30 коп. В обращении находились монеты достоинством в 1, 2, 3, 5, 10, 15 и 20 коп.)
|
|
Сложность: 3 Классы: 9,10,11
|
Школьник едет на кружок на трамвае, платит рубль и получает сдачу. Доказать,
что если он обратно также поедет в трамвае, то он сможет уплатить за
проезд без сдачи. (
Примечание. Проезд в трамвае стоил 30
коп. В обращении находились монеты достоинством в 1, 2, 3, 5, 10, 15 и 20 коп.)
|
|
Сложность: 3 Классы: 8,9,10
|
В круге проведены два диаметра
AB и
CD. Доказать, что если
M —
произвольная точка окружности, а
P и
Q — её проекции на диаметры
AB и
CD, то длина отрезка
PQ не зависит от выбора точки
M.
Страница:
<< 49 50 51 52
53 54 55 >> [Всего задач: 1957]