Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 15 задач
Версия для печати
Убрать все задачи

В наборе имеется 100 гирь, каждые две из которых отличаются по массе не более чем на 20 г. Доказать, что эти гири можно положить на две чашки весов, по 50 штук на каждую, так, чтобы одна чашка весов была легче другой не более чем на 20 г.

Вниз   Решение


а) Докажите, что сумма углов при вершинах выпуклого n-угольника равна  (n - 2) . 180o.
б) Выпуклый n-угольник разрезан непересекающимися диагоналями на треугольники. Докажите, что количество этих треугольников равно n - 2.

ВверхВниз   Решение


Докажите, что окружность при осевой симметрии переходит в окружность.

ВверхВниз   Решение


Даны два многочлена от переменной x с целыми коэффициентами. Произведение их есть многочлен от переменной x с чётными коэффициентами, не все из которых делятся на 4. Доказать, что в одном из многочленов все коэффициенты чётные, а в другом – хоть один нечётный.

ВверхВниз   Решение


В клетках доски  n×n  произвольно расставлены числа от 1 до n². Докажите, что найдутся две такие соседние клетки (имеющие общую вершину или общую сторону), что стоящие в них числа отличаются не меньше чем на  n + 1.

ВверхВниз   Решение


Дан треугольник ABC. Построены четыре окружности равного радиуса $ \rho$ так, что одна из них касается трех других, а каждая из этих трех касается двух сторон треугольника. Найдите $ \rho$, если радиусы вписанной и описанной окружностей треугольника равны r и R соответственно.

ВверхВниз   Решение


На плоскости расположено n$ \ge$5 окружностей так, что любые три из них имеют общую точку. Докажите, что тогда и все окружности имеют общую точку.

ВверхВниз   Решение


Разрежьте произвольный треугольник на 3 части и сложите из них прямоугольник.

ВверхВниз   Решение


Дан четырехугольник ABCD. На стороне AB взята точка K, на стороне BC &8212; точка L, на стороне CD — точка M и на стороне AD — точка N, так, что KB = BL = a, MD = DN = b. Пусть KL $ \nparallel$ MN. Найти геометрическое место точек пересечения прямых KL и MN при изменении a и b.

ВверхВниз   Решение


Докажите, что если фигура имеет две перпендикулярные оси симметрии, то она имеет центр симметрии.

ВверхВниз   Решение


На клетчатой бумаге написана таблица, причём в каждой клетке стоит число, равное среднему арифметическому четырёх чисел, стоящих в соседних клетках. Все числа в таблице различны. Докажите, что наибольшее число стоит с края (то есть по крайней мере одна из соседних клеток отсутствует).

ВверхВниз   Решение


а) Даны прямые a, b, c, d, проходящие через одну точку, и прямая l, через эту точку не проходящая. Пусть A, B, C, D — точки пересечения прямой l с прямыми a, b, c, d соответственно. Докажите, что (abcd )= (ABCD).
б) Докажите, что двойное отношение четверки точек сохраняется при проективных преобразованиях.

ВверхВниз   Решение


Сумма четырех единичных векторов равна нулю. Докажите, что их можно разбить на две пары противоположных векторов.

ВверхВниз   Решение


В ряд стоят 1999 чисел. Первое число равно 1. Известно, что каждое число, кроме первого и последнего, равно сумме двух соседних.
Найдите последнее число.

ВверхВниз   Решение


Из бумаги вырезан многоугольник. Две точки его границы соединяются отрезком, по которому многоугольник складывается. Доказать, что периметр многоугольника, получающегося после складывания, меньше периметра исходного многоугольника.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 78154  (#1)

Темы:   [ Неравенство треугольника (прочее) ]
[ Произвольные многоугольники ]
Сложность: 3
Классы: 9,10

Из бумаги вырезан многоугольник. Две точки его границы соединяются отрезком, по которому многоугольник складывается. Доказать, что периметр многоугольника, получающегося после складывания, меньше периметра исходного многоугольника.
Прислать комментарий     Решение


Задача 78155  (#2)

Темы:   [ Линейные неравенства и системы неравенств ]
[ Доказательство от противного ]
Сложность: 3
Классы: 9,10

Для любых чисел a1 и a2, удовлетворяющих условиям  a1 ≥ 0,  a2 ≥ 0,  a1 + a2 = 1,  можно найти такие числа b1 и b2, что  b1 ≥ 0,  b2 ≥ 0,  b1 + b2 = 1,
(5/4a1)b1 + 3(5/4a2)b2 > 1.  Доказать.

Прислать комментарий     Решение

Задача 78156  (#3)

Темы:   [ Угол между касательной и хордой ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
Сложность: 3+
Классы: 9,10

Внутри угла AOB взята точка C, опущены перпендикуляры CD на сторону OA и CE на сторону OB. Затем опущены перпендикуляры EM на сторону OA и DN на сторону OB. Доказать, что  OCMN.

Прислать комментарий     Решение

Задача 78157  (#4)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Арифметическая прогрессия ]
Сложность: 2+
Классы: 8,9,10

Доказать, что если целое  n > 1,  то  11·2²·3³·...·nn < nn(n+1)/2.

Прислать комментарий     Решение

Задача 78158  (#5)

Темы:   [ Покрытия ]
[ Геометрические неравенства (прочее) ]
Сложность: 4-
Классы: 9,10

Обозначим через a наибольшее число непересекающихся кругов диаметра 1, центры которых лежат внутри многоугольника M, через b — наименьшее число кругов радиуса 1, которыми можно покрыть весь многоугольник M. Какое число больше: a или b?
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .