ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Варианты:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На какое целое число надо умножить 999 999 999, чтобы получить число, состоящее из одних единиц? В остроугольном треугольнике $ABC$ высоты $AH$ и $CH$ пересекают стороны $BC$ и $AB$ в точках $A_1$ и $C_1$. Точки $A_2$ и $C_2$ симметричны относительно $AC$ точкам $A_1$ и $C_1$. Докажите, что расстояние между центрами описанных окружностей треугольников $C_2HA_1$ и $C_1HA_2$ равно $AC$. Пусть P(x) – многочлен ненулевой степени с целыми коэффициентами. Могут ли все числа P(0), P(1), P(2), ... быть простыми? Доказать, что существует бесконечно много чисел, не представимых в виде суммы трёх кубов. Существует ли тетраэдр, каждое ребро которого являлось бы стороной плоского тупого угла? Докажите, что числа Ферма fn = 22n + 1 при n > 1 не представимы в виде суммы двух простых чисел. Даны n комплексных чисел C1, C2,..., Cn, таких, что если их представлять себе как точки плоскости, то они являются вершинами выпуклого n-угольника. Доказать, что если комплексное число z обладает тем свойством, что Докажите для положительных значений переменных неравенство (a + b + c)(a² + b² + c²) ≥ 9abc. n отрезков длины 1 пересекаются в одной точке. Доказать, что хотя бы одна сторона 2n-угольника, образованного их концами, не меньше стороны правильного 2n-угольника, вписанного в окружность диаметра 1. Дан треугольник ABC. Построим треугольник, стороны которого касаются вневписанных окружностей этого треугольника. Зная углы исходного треугольника, найти углы построенного. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]
Даны 12 чисел, a1, a2,...a12, причём имеют место следующие неравенства:
Дан треугольник ABC. Построим треугольник, стороны которого касаются вневписанных окружностей этого треугольника. Зная углы исходного треугольника, найти углы построенного.
Даны два пересекающихся отрезка длины 1, AB и CD. Доказать, что по
крайней мере одна из сторон четырёхугольника ABCD не меньше
Доказать, что шахматную доску размером 4 на 4 нельзя обойти ходом шахматного коня, побывав на каждом поле ровно один раз.
Доказать, что существует бесконечно много чисел, не представимых в виде суммы трёх кубов.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке