ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Варианты:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На каждой из двенадцати диагоналей граней куба выбирается произвольная точка. Определяется центр тяжести этих двенадцати точек. Вычислите суммы: а) 1 + a cos φ + ... + ak cos kφ + ... ( |a| < 1); б) a sin φ + ... + ak sin kφ + ... ( |a| < 1); в) г) а) Найдите сумму всех трёхзначных чисел, которые можно записать с помощью цифр 1, 2, 3, 4 (цифры могут повторяться). На листе бумаги нанесена сетка из n горизонтальных и n вертикальных прямых. Сколько различных замкнутых 2n-звенных ломаных можно провести по линиям сетки так, чтобы каждая ломаная проходила по всем горизонтальным и всем вертикальным прямым? Из цифр 1, 2, 3, 4, 5, 6, 7 составляются всевозможные семизначные числа, в
записи которых каждая из этих цифр встречается ровно один раз. Сколькими способами четыре чёрных шара, четыре белых шара и четыре синих шара можно разложить в шесть различных ящиков? Доказать, что на сфере нельзя так расположить три дуги больших окружностей в 300o каждая, чтобы никакие две из них не имели ни общих точек, ни общих концов. Примечание: Большая окружность – это окружность, полученная в сечении сферы плоскостью, проходящей через ее центр. Окружности
На стороны BC и CD параллелограмма ABCD (или
на их продолжения) опущены перпендикуляры AM и AN. Доказать, что из одиннадцати произвольных бесконечных десятичных дробей можно выбрать две дроби, разность которых имеет в десятичной записи либо бесконечное число нулей, либо бесконечное число девяток. В трапецию ABCD (BC || AD) вписана окружность,
касающаяся боковых сторон AB и CD в точках K и L
соответственно, а оснований AD и BC в точках M и N.
Петин кот перед дождем всегда чихает. Сегодня он чихнул. ``Значит, будет дождь'' - думает Петя. Прав ли он?
На отрезке MN построены подобные, одинаково ориентированные
треугольники AMN, NBM и MNC (см. рис.). Углы треугольника ABC связаны соотношением 3α + 2β = 180°. Докажите, что a² + bc = c². Сколькими способами можно представить 1000000 в виде произведения трёх множителей, если произведения, отличающиеся порядком множителей, Сколько ожерелий можно составить из пяти одинаковых красных бусинок и двух одинаковых синих бусинок? Сколькими способами из полной колоды (52 карты) можно выбрать Из любых шести точек на плоскости (из которых никакие три не лежат на одной прямой) можно так выбрать три, что треугольник с вершинами в этих точках имеет хотя бы один угол, не больший 30o. Доказать. |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 42]
Решить в целых числах уравнение xy/z + xz/y + yz/x = 3.
Из любых шести точек на плоскости (из которых никакие три не лежат на одной прямой) можно так выбрать три, что треугольник с вершинами в этих точках имеет хотя бы один угол, не больший 30o. Доказать.
Доказать, что из одиннадцати произвольных бесконечных десятичных дробей можно выбрать две дроби, разность которых имеет в десятичной записи либо бесконечное число нулей, либо бесконечное число девяток.
Дан произвольный треугольник ABC и такая прямая l, пересекающая треугольник, что расстояние от неё до точки A равно сумме расстояний до этой прямой от точек B и C (причем B и C лежат по одну сторону от l). Доказать, что все такие прямые проходят через одну точку.
На листе бумаги нанесена сетка из n горизонтальных и n вертикальных прямых. Сколько различных замкнутых 2n-звенных ломаных можно провести по линиям сетки так, чтобы каждая ломаная проходила по всем горизонтальным и всем вертикальным прямым?
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 42]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке