ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Годы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи X – число, большее 2. Некто пишет на карточках числа: 1, X, X², X³, X4, ..., Xk (каждое число только на одной карточке). Потом часть карточек он кладёт себе в правый карман, часть в левый, остальные выбрасывает. Докажите, что сумма чисел в правом кармане не может быть равна сумме чисел в левом. |
Страница: << 116 117 118 119 120 121 122 >> [Всего задач: 1957]
Известно, что при любом целом K ≠ 27 число a – K1964 делится без остатка на 27 – K. Найти a.
На квадратном поле размерами 99×99, разграфленном на клетки размерами 1×1, играют двое. Первый игрок ставит крестик на центр поля; вслед за этим второй игрок может поставить нолик на любую из восьми клеток, окружающих крестик первого игрока. После этого первый ставит крестиктна любое из полей рядом с уже занятыми и т.д. Первый игрок выигрывает, если ему удастся поставить крестик на любую угловую клетку. Доказать, что при любой игре второго игрока первый всегда может выиграть.
Шестизначное число делится на 37 и имеет хотя бы две различные цифры. Его
первая и четвёртая цифры – не нули.
Концы отрезка постоянной длины скользят по сторонам данного угла. Из середины этого отрезка к нему восставлен перпендикуляр. Докажите, что отрезок перпендикуляра от его начала до точки пересечения с биссектрисой угла имеет постоянную длину.
X – число, большее 2. Некто пишет на карточках числа: 1, X, X², X³, X4, ..., Xk (каждое число только на одной карточке). Потом часть карточек он кладёт себе в правый карман, часть в левый, остальные выбрасывает. Докажите, что сумма чисел в правом кармане не может быть равна сумме чисел в левом.
Страница: << 116 117 118 119 120 121 122 >> [Всего задач: 1957]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке