Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 16 задач
Версия для печати
Убрать все задачи

Точка O лежит на отрезке AB, причём AO = 13, OB = 7. С центром в точке O проведена окружность радиуса 5. Из A и B к ней проведены касательные, пересекающиеся в точке M, причём точки касания лежат по одну сторону от прямой AB. Найдите радиус окружности, описанной вокруг треугольника AMB.

Вниз   Решение


Произведение пяти чисел не равно нулю. Каждое из этих чисел уменьшили на единицу, при этом их произведение не изменилось. Приведите пример таких чисел.

ВверхВниз   Решение


Пусть M и N — середины сторон CD и DE правильного шестиугольника ABCDEF, P — точка пересечения отрезков AM и BN.
а) Найдите величину угла между прямыми AM и BN.
б) Докажите, что SABP = SMDNP.

ВверхВниз   Решение


Числовая последовательность  A1, A2, ..., An, ...  определена равенствами   A1 = 1,   A2 = – 1,   An = – An–1 – 2An–2   (n ≥ 3).
Докажите, что при любом натуральном n число     является полным квадратом.

ВверхВниз   Решение


Из имеющихся последовательностей {bn} и {cn} (возможно, {bn} совпадает с {cn})  разрешается получать последовательности  {bn + cn},
{bn – cn},  {bncn}  и  {bn/cn}  (если все члены последовательности {cn} отличны от 0). Кроме того, из любой имеющейся последовательности можно получить новую, вычеркнув несколько начальных членов. Сначала есть только последовательность {an}. Можно ли получить из неё описанными выше операциями последовательность {n}, то есть 1, 2, 3, 4, ..., если
  а)  an = n²;

  б)  

  в)  

ВверхВниз   Решение


Делится ли  222555 + 555222  на 7?

ВверхВниз   Решение


В классе 30 учеников. Докажите, что вероятность того, что у каких-нибудь двух учеников совпадают дни рождения, составляет больше 50%.

ВверхВниз   Решение


Используя результат задачи 61403, докажите неравенства:
  а)     неравенство Коши);
  б)  

  в)     где  b1 + ... + bn = 1.
  Значения переменных считаются положительными.

ВверхВниз   Решение


С помощью циркуля и линейки в данный треугольник впишите треугольник, равный другому данному треугольнику.

ВверхВниз   Решение


Дан выпуклый четырёхугольник ABCD, в котором  ∠DAB = 90°.  Пусть M – середина стороны BC. Оказалось. что  ∠ADC = ∠BAM.
Докажите, что  ∠ADB = ∠CAM.

ВверхВниз   Решение


Точки A1, B1, C1 – середины сторон соответственно BC, AC, AB треугольника ABC. Известно, что A1A и B1B – биссектрисы углов треугольника A1B1C1. Найдите углы треугольника ABC.

ВверхВниз   Решение


Существует ли такое натуральное число n, что числа n, n², n³ начинаются на одну и ту же цифру, отличную от единицы?

ВверхВниз   Решение


Из точки M внутри четырёхугольника ABCD опущены перпендикуляры на стороны. Основания перпендикуляров лежат внутри сторон. Обозначим эти основания: то, которое лежит на стороне AB — через X, лежащее на стороне BC — через Y, лежащее на стороне CD — через Z, лежащее на стороне DA — через T. Известно, что AXXB, BYYC, CZZD, DTTA. Докажите, что вокруг четырёхугольника ABCD можно описать окружность.

ВверхВниз   Решение


В равнобедренном треугольнике KLM (KL = LM) угол KLM равен $ \varphi$. Найдите отношение радиусов вписанной и описанной окружностей треугольника KLM.

ВверхВниз   Решение


Около треугольника ABC, в котором BC = a, $ \angle$B = $ \alpha$, $ \angle$C = $ \beta$, описана окружность. Биссектриса угла A пересекает эту окружность в точке K. Найдите AK.

ВверхВниз   Решение


На окружности радиуса 1 отмечено 100 точек. Доказать, что на этой окружности можно найти такую точку, чтобы сумма расстояний от неё до всех отмеченных точек была больше 100.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



Задача 78729

Темы:   [ Взвешивания ]
[ Процессы и операции ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 8

В наборе имеется 100 гирь, каждые две из которых отличаются по массе не более чем на 20 г. Доказать, что эти гири можно положить на две чашки весов, по 50 штук на каждую, так, чтобы одна чашка весов была легче другой не более чем на 20 г.
Прислать комментарий     Решение


Задача 78733

Тема:   [ Линейные неравенства и системы неравенств ]
Сложность: 3
Классы: 8,9

На каждую чашку весов положили k гирь, занумерованных числами от 1 до k, причём левая чашка перевесила. Оказалось, что если поменять чашками любые две гири с одинаковыми номерами, то всегда либо правая чашка начинает перевешивать, либо чашки приходят в равновесие. При каких k это возможно?

Прислать комментарий     Решение

Задача 78740

Тема:   [ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 10,11

Масса каждой из 19 гирь не больше 70 г и равна целому числу граммов. Доказать, что из этих гирь нельзя составить более 1230 различных по массе наборов.
Прислать комментарий     Решение


Задача 78742

Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 3 и 9 ]
Сложность: 3
Классы: 7,8,9

У числа 21970 зачеркнули его первую цифру и прибавили её к оставшемуся числу. С результатом проделали ту же операцию и т.д., до тех пор пока не получили десятизначное число. Доказать, что в этом числе есть две одинаковые цифры.

Прислать комментарий     Решение

Задача 78746

Тема:   [ Неравенство треугольника ]
Сложность: 3
Классы: 8,9

На окружности радиуса 1 отмечено 100 точек. Доказать, что на этой окружности можно найти такую точку, чтобы сумма расстояний от неё до всех отмеченных точек была больше 100.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 23]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .