Страница:
<< 122 123 124 125
126 127 128 >> [Всего задач: 1957]
Дан многочлен с целыми коэффициентами. В трёх целых точках он принимает
значение 2.
Доказать, что ни в какой целой точке он не принимает значение 3.
В городе N с каждой станции метро на любую другую можно проехать. Доказать, что одну из станций можно закрыть на ремонт без права проезда через неё так, чтобы с любой из оставшихся станций можно было по-прежнему проехать на любую
другую.
|
|
Сложность: 3+ Классы: 10,11
|
На кубе отмечены вершины и центры граней, а также проведены диагонали всех
граней. Можно ли по отрезкам этих диагоналей обойти все отмеченные точки,
побывав в каждой из них ровно по одному разу?
|
|
Сложность: 3+ Классы: 7,8,9
|
В клетках прямоугольной таблицы 8×5 расставлены натуральные числа. За один ход разрешается одновременно удвоить все числа одной строки или же вычесть единицу из всех чисел одного столбца. Доказать, что за несколько ходов можно добиться того, чтобы все числа таблицы стали равными нулю.
|
|
Сложность: 3+ Классы: 10,11
|
Доказать, что в десятичной записи чисел 2n + 1974n и 1974n содержится одинаковое количество цифр.
Страница:
<< 122 123 124 125
126 127 128 >> [Всего задач: 1957]