Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На прямоугольном листе клетчатой бумаги размером m×n клеток расположено несколько квадратов, стороны которых идут по вертикальным и горизонтальным линиям бумаги. Известно, что никакие два квадрата не совпадают и никакой квадрат не содержит внутри себя другой квадрат. Каково наибольшее число таких квадратов?

   Решение

Задачи

Страница: << 176 177 178 179 180 181 182 >> [Всего задач: 1982]      



Задача 79268

Темы:   [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
[ Десятичная система счисления ]
Сложность: 3+
Классы: 8,9,10

Доказать, что число 100...001, в котором  21974 + 21000 – 1  нулей, составное.

Прислать комментарий     Решение

Задача 79269

Темы:   [ Площадь. Одна фигура лежит внутри другой ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 8,9,10

Доказать, что в круг радиуса 1 нельзя поместить без наложений два треугольника, площадь каждого из которых больше 1.
Прислать комментарий     Решение


Задача 79289

Тема:   [ Неравенства для элементов треугольника (прочее) ]
Сложность: 3+
Классы: 9,10

Дан треугольник ABC, AD и BE — его биссектрисы. Известно, что AC > BC. Доказать, что AE > DE > BD.
Прислать комментарий     Решение


Задача 79297

Темы:   [ Разные задачи на разрезания ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Геометрия на клетчатой бумаге ]
Сложность: 3+
Классы: 8,9,10

На шахматной доске размером 8×8 отмечены 64 точки — центры всех клеток. Можно ли отделить все точки друг от друга, проведя 13 прямых, не проходящих через эти точки?
Прислать комментарий     Решение


Задача 79312

Темы:   [ Неравенства с площадями ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 11

В остроугольном треугольнике ABC проведены медиана AM, биссектриса BK и высота CH. Пусть M'K'H' — треугольник с вершинами в точках пересечения трёх проведённых отрезков. Может ли площадь полученного треугольника быть больше 0,499 площади треугольника ABC?
Прислать комментарий     Решение


Страница: << 176 177 178 179 180 181 182 >> [Всего задач: 1982]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .