ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Решите уравнение xx4 = 4 (x > 0).

   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 79500  (#1)

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 4-
Классы: 11

На листе бумаги отмечены точки A, B, C, D. Распознающее устройство может абсолютно точно выполнять два типа операций: а) измерять в сантиметрах расстояние между двумя заданными точками; б) сравнивать два заданных числа. Какое наименьшее число операций нужно выполнить этому устройству, чтобы наверняка определить, является ли четырёхугольник ABCD квадратом?
Прислать комментарий     Решение


Задача 79501  (#2)

Темы:   [ Неравенства с биссектрисами ]
[ Теорема синусов ]
[ Применение тригонометрических формул (геометрия) ]
[ Вписанные и описанные окружности ]
Сложность: 4+
Классы: 9,10,11

Биссектриса угла A треугольника ABC продолжена до пересечения в D с описанной вокруг него окружностью. Докажите, что AD > 1/2 (AB + AC).
Прислать комментарий     Решение


Задача 79502  (#3)

Темы:   [ Показательные уравнения ]
[ Монотонность и ограниченность ]
Сложность: 3+
Классы: 10,11

Решите уравнение xx4 = 4 (x > 0).
Прислать комментарий     Решение


Задача 79503  (#4)

Темы:   [ Неравенства с векторами ]
[ Скалярное произведение ]
Сложность: 3+
Классы: 10,11

Докажите, что ни для каких векторов a, b, c не могут одновременно выполняться три неравенства

|a| < |bc|,  |b| < |ca|,  |c| < |ab|.

Прислать комментарий     Решение

Задача 79504  (#5)

Тема:   [ Возрастание и убывание. Исследование функций ]
Сложность: 5-
Классы: 10,11

Найдите минимум по всем α, β максимума функции

y(x) = |cos x + α cos 2x + β cos 3x|.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .