ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Кружки, факультативы, спецкурсы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Из полоски бумаги шириной 1 см склеили цилиндрическое кольцо с длиной окружности 4 см. Можно ли из этого кольца изготовить квадрат, имеющий площадь: а) 1 кв.см; б) 2 кв.см. Бумагу разрешается склеивать, складывать, но НЕЛЬЗЯ резать. Квадрат ABCD вписан в окружность. Точка M лежит на дуге BC, прямая AM пересекает BD в точке P, прямая DM пересекает AC в точке Q. Последовательность чисел x0, x1, x2,...задается условиями
x0 = 1, xn + 1 = axn (n Найдите наибольшее число a, для
которого эта последовательность имеет предел. Чему равен этот
предел для такого a?
На плоскости начерчен треугольник и в нём отмечены две точки. Известно, что какой-то из углов треугольника равен 58°, какой-то из остальных – 59°, какая-то из отмеченных точек является центром вписанной окружности, а другая – центром описанной. Используя только линейку без делений, определите, где какой угол и где какая точка. Докажите, что если M' и N' — образы многоугольников M
и N при аффинном преобразовании, то отношение
площадей M и N равно отношению площадей M' и N'.
Решите уравнение 3x + 5y = 7 в целых числах. Дано 25 чисел. Известно, что сумма любых четырёх из них положительна. Верно ли, что сумма всех чисел положительна? В пространстве отмечены пять точек. Известно, что это центры сфер, четыре из которых попарно касаются извне и касаются изнутри пятой сферы. При этом невозможно определить, какая точка является центром объемлющей сферы. Найдите отношение радиусов наибольшей и наименьшей сферы. Может ли прямая пересекать (во внутренних точках) все стороны невыпуклого: Высоты AA' и BB' треугольника ABC пересекаются в точке H. Точки X и Y – середины отрезков AB и CH соответственно. На доске написано несколько положительных чисел, каждое из которых равно полусумме остальных. Сколько чисел написано на доске? Найдите углы выпуклого четырёхугольника ABCD, в котором
На прямой даны точки А, В и, кроме того, 57 точек, лежащих вне отрезка АВ. Каждая из этих 57 точек – либо красного, либо синего цвета. Рассмотрим следующие суммы:
Противоположные стороны выпуклого шестиугольника ABCDEF
попарно параллельны. Докажите, что:
Решите в целых числах уравнение 1990x – 173y = 11. Известно, что выражение 14x + 13y делится на 11 при некоторых целых x и y. Докажите, что 19x + 9y также делится на 11 при таких x и y. Придайте смысл равенству Доказать, что для любого натурального n число 62(n+1) − 2n+3·3n + 2 + 36 делится на 900. Даны три точки A, B и C. Постройте три окружности,
попарно касающиеся в этих точках.
В треугольник ABC вписана окружность, касающаяся
его сторон в точках
A1, B1, C1. Докажите, что если треугольники ABC
и A1B1C1 подобны, то треугольник ABC правильный.
Существует ли треугольник с высотами, равными 1, 2 и 3? В треугольнике ABC проведены биссектрисы BB1 и CC1. Докажите, что если
описанные окружности треугольников ABB1 и ACC1 пересекаются в точке,
лежащей на стороне BC, то
Набор чисел A1, A2, ..., A100 получен некоторой перестановкой из чисел 1, 2, ..., 100. Образуют сто чисел: Заменим в произведении 100· 101·102·...·200 все числа на 150. Увеличится или уменьшится произведение? Тот же вопрос для суммы. |
Страница: << 90 91 92 93 94 95 96 >> [Всего задач: 644]
Дано 25 чисел. Известно, что сумма любых четырёх из них положительна. Верно ли, что сумма всех чисел положительна?
На клетке b8 шахматной доски написано число –1, а на всех остальных клетках число 1. Разрешается одновременно менять знак во всех клетках одной вертикали или одной горизонтали. Докажите, что сколько бы раз мы это ни проделывали, невозможно добиться, чтобы все числа в таблице стали положительными.
У продавца имеются чашечные весы с неравными плечами и гири. Сначала он взвешивает товар на одной чашке, затем – на другой и берёт средний вес. Не обманывает ли он?
Заменим в произведении 100· 101·102·...·200 все числа на 150. Увеличится или уменьшится произведение? Тот же вопрос для суммы.
Набор чисел a, b, c каждую секунду заменяется на a + b − c, b + c − a, c + a − b. В начале имеется набор чисел 2000, 2002, 2003. Может ли через некоторое время получиться набор 2001, 2002, 2003.
Страница: << 90 91 92 93 94 95 96 >> [Всего задач: 644]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке