Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Кружки, факультативы, спецкурсы:
Фильтр
Сложность с по   Класс с по  
Выбрано 25 задач
Версия для печати
Убрать все задачи

Из полоски бумаги шириной 1 см склеили цилиндрическое кольцо с длиной окружности 4 см. Можно ли из этого кольца изготовить квадрат, имеющий площадь: а) 1 кв.см; б) 2 кв.см. Бумагу разрешается склеивать, складывать, но НЕЛЬЗЯ резать.

Вниз   Решение


Автор: Рожкова М.

Квадрат ABCD вписан в окружность. Точка M лежит на дуге BC, прямая AM пересекает BD в точке P, прямая DM пересекает AC в точке Q.
Докажите, что площадь четырёхугольника APQD равна половине площади квадрата.

ВверхВниз   Решение


Последовательность чисел x0, x1, x2,...задается условиями

x0 = 1,        xn + 1 = axn    (n $\displaystyle \geqslant$ 0).

Найдите наибольшее число a, для которого эта последовательность имеет предел. Чему равен этот предел для такого a?

ВверхВниз   Решение


На плоскости начерчен треугольник и в нём отмечены две точки. Известно, что какой-то из углов треугольника равен 58°, какой-то из остальных – 59°, какая-то из отмеченных точек является центром вписанной окружности, а другая – центром описанной. Используя только линейку без делений, определите, где какой угол и где какая точка.

ВверхВниз   Решение


Докажите, что если M' и N' — образы многоугольников M и N при аффинном преобразовании, то отношение площадей M и N равно отношению площадей M' и N'.

ВверхВниз   Решение


Решите уравнение  3x + 5y = 7  в целых числах.

ВверхВниз   Решение


Дано 25 чисел. Известно, что сумма любых четырёх из них положительна. Верно ли, что сумма всех чисел положительна?

ВверхВниз   Решение


В пространстве отмечены пять точек. Известно, что это центры сфер, четыре из которых попарно касаются извне и касаются изнутри пятой сферы. При этом невозможно определить, какая точка является центром объемлющей сферы. Найдите отношение радиусов наибольшей и наименьшей сферы.

ВверхВниз   Решение


Может ли прямая пересекать (во внутренних точках) все стороны невыпуклого:
  а) (2n+1)-угольника;  б) 2n-угольника?

ВверхВниз   Решение


Высоты AA' и BB' треугольника ABC пересекаются в точке H. Точки X и Y – середины отрезков AB и CH соответственно.
Доказать, что прямые XY и A'B' перпендикулярны.

ВверхВниз   Решение


На доске написано несколько положительных чисел, каждое из которых равно полусумме остальных. Сколько чисел написано на доске?

ВверхВниз   Решение


Найдите углы выпуклого четырёхугольника ABCD, в котором $ \angle$BAC = 30o, $ \angle$ACD = 40o, $ \angle$ADB = 50o, $ \angle$CBD = 60o и $ \angle$ABC + $ \angle$ADC = 180o.

ВверхВниз   Решение


На прямой даны точки А, В и, кроме того, 57 точек, лежащих вне отрезка АВ. Каждая из этих 57 точек – либо красного, либо синего цвета. Рассмотрим следующие суммы:
  S1 – сумма расстояний от точки А до всех красных точек плюс сумма расстояний от точки В до всех синих точек;
  S2 – сумма расстояний от точки А до всех синих точек плюс сумма расстояний от точки В до всех красных точек.
Доказать, что  S1S2.

ВверхВниз   Решение



Высота прямоугольного треугольника ABC, опущенная на гипотенузу, равна 9.6. Из вершины C прямого угла восставлен к плоскости треугольника ABC перпендикуляр CM, причем CM = 28. Найдите расстояние от точки M до гипотенузы AB.

ВверхВниз   Решение


Противоположные стороны выпуклого шестиугольника ABCDEF попарно параллельны. Докажите, что:
а) площадь треугольника ACE составляет не менее половины площади шестиугольника.
б) площади треугольников ACE и BDF равны.

ВверхВниз   Решение


Решите в целых числах уравнение  1990x – 173y = 11.

ВверхВниз   Решение


Известно, что выражение  14x + 13y  делится на 11 при некоторых целых x и y. Докажите, что  19x + 9y  также делится на 11 при таких x и y.

ВверхВниз   Решение


Придайте смысл равенству   = (–1)1/i ≈ 231/7.

ВверхВниз   Решение


Доказать, что для любого натурального n число  62(n+1) − 2n+3·3n + 2 + 36  делится на 900.

ВверхВниз   Решение


Даны три точки A, B и C. Постройте три окружности, попарно касающиеся в этих точках.

ВверхВниз   Решение


В треугольник ABC вписана окружность, касающаяся его сторон в точках  A1, B1, C1. Докажите, что если треугольники ABC и A1B1C1 подобны, то треугольник ABC правильный.

ВверхВниз   Решение


Существует ли треугольник с высотами, равными 1, 2 и 3?

ВверхВниз   Решение


В треугольнике ABC проведены биссектрисы BB1 и CC1. Докажите, что если описанные окружности треугольников ABB1 и ACC1 пересекаются в точке, лежащей на стороне BC, то $ \angle$A = 60o.

ВверхВниз   Решение


Набор чисел  A1, A2, ..., A100  получен некоторой перестановкой из чисел 1, 2, ..., 100. Образуют сто чисел:
      B1 = A1B2 = A1 + A2B3 = A1 + A2 + A3,  ...,  B100 = A1 + A2 + A3 + ... + A100.
Докажите, что среди остатков от деления на 100 чисел  B1, B2, ..., B100  найдутся 11 различных.

ВверхВниз   Решение


Заменим в произведении 100· 101·102·...·200 все числа на 150. Увеличится или уменьшится произведение? Тот же вопрос для суммы.

Вверх   Решение

Задачи

Страница: << 90 91 92 93 94 95 96 >> [Всего задач: 644]      



Задача 88101

Темы:   [ Линейные неравенства и системы неравенств ]
[ Разбиения на пары и группы; биекции ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 3
Классы: 5,6,7

Дано 25 чисел. Известно, что сумма любых четырёх из них положительна. Верно ли, что сумма всех чисел положительна?

Прислать комментарий     Решение

Задача 88187

Темы:   [ Числовые таблицы и их свойства ]
[ Инварианты ]
Сложность: 3
Классы: 6,7,8

На клетке b8 шахматной доски написано число –1, а на всех остальных клетках число 1. Разрешается одновременно менять знак во всех клетках одной вертикали или одной горизонтали. Докажите, что сколько бы раз мы это ни проделывали, невозможно добиться, чтобы все числа в таблице стали положительными.

Прислать комментарий     Решение

Задача 88292

Темы:   [ Взвешивания ]
[ Неравенство Коши ]
[ Средние величины ]
Сложность: 3
Классы: 7,8

У продавца имеются чашечные весы с неравными плечами и гири. Сначала он взвешивает товар на одной чашке, затем – на другой и берёт средний вес. Не обманывает ли он?

Прислать комментарий     Решение

Задача 88293

Темы:   [ Произведения и факториалы ]
[ Неравенство Коши ]
[ Арифметическая прогрессия ]
Сложность: 3
Классы: 7,8,9

Заменим в произведении 100· 101·102·...·200 все числа на 150. Увеличится или уменьшится произведение? Тот же вопрос для суммы.

Прислать комментарий     Решение

Задача 88307

Темы:   [ Инварианты ]
[ Арифметические действия. Числовые тождества ]
Сложность: 3
Классы: 7,8

Набор чисел a, b, c каждую секунду заменяется на a + bc, b + ca, c + ab. В начале имеется набор чисел 2000, 2002, 2003. Может ли через некоторое время получиться набор 2001, 2002, 2003.
Прислать комментарий     Решение


Страница: << 90 91 92 93 94 95 96 >> [Всего задач: 644]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .