ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Туры:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Сторона основания правильной треугольной пирамиды равна a . Боковое ребро образует с плоскостью основания угол 60o . Найдите высоту пирамиды. Решение Можно ли разрезать плоскость на многоугольники, каждый из которых переходит в себя при повороте на 360°/7 вокруг некоторой точки и все стороны которых больше 1 см? Решение |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]
Можно ли разрезать плоскость на многоугольники, каждый из которых переходит в себя при повороте на 360°/7 вокруг некоторой точки и все стороны которых больше 1 см?
Можно ли в таблицу 9×9 расставить такие натуральные числа, что одновременно выполняются следующие условия:
Пусть M – центр тяжести (точка пересечения медиан) треугольника ABC. При повороте на 120° вокруг точки M точка B переходит в точку P, при повороте на 240° вокруг точки M (в том же направлении) точка C переходит в точку Q. Докажите, что либо треугольник APQ – правильный, либо точки A, P, Q совпадают.
Пусть в прямоугольном треугольнике AB и AC – катеты, AC > AB. На AC выбрана точка E, а на BC – точка D так, что AB = AE = BD.
Внутри окружности радиуса 1 расположена замкнутая ломаная (самопересекающаяся), содержащая 51 звено, причём известно, что длина каждого звена равна . Для каждого угла этой ломаной рассмотрим треугольник, двумя сторонами которого служат звенья ломаной, образующие этот угол (таких треугольников всего 51). Докажите, что сумма площадей этих треугольников не меньше, чем утроенная площадь правильного треугольника, вписанного в окружность.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|