Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Автор: Белухов Н.

Можно ли разрезать правильный десятиугольник по нескольким диагоналям и сложить из получившихся кусков два правильных многоугольника?

Вниз   Решение


Треугольник ABC  (AB > BC)  вписан в окружность Ω. На сторонах AB и BC выбраны точки M и N соответственно так, что  AM = CN.  Прямые MN и AC пересекаются в точке K. Пусть P – центр вписанной окружности треугольника AMK, а Q – центр вневписанной окружности треугольника CNK, касающейся стороны CN. Докажите, что середина дуги ABC окружности Ω равноудалена от точек P и Q.

ВверхВниз   Решение


Дан кубический многочлен  f(x). Назовём циклом такую тройку различных чисел  (a, b, c),  что  f(a) = b,  f(b) = c  и  f(c) = a.  Известно, что нашлись восемь циклов  (ai, bi, ci),  i = 1, 2, ..., 8,  в которых участвуют 24 различных числа. Докажите, что среди восьми чисел вида  ai + bi + ci  есть хотя бы три различных.

ВверхВниз   Решение


Диагонали AC и BD вписанного четырёхугольника ABCD пересекаются в точке P. Точка Q выбрана на отрезке BC так, что  PQAC.
Докажите, что прямая, проходящая через центры описанных окружностей ω1 и ω2 треугольников APD и BQD, параллельна прямой AD.

ВверхВниз   Решение


Автор: Белухов Н.

Есть 101 жук, среди которых некоторые являются друзьями. Известно, что любые 100 жуков могут расположиться на плоскости так, что каждые два из них будут друзьями тогда и только тогда, когда расстояние между ними равно 1. Верно ли, что все жуки тоже могут расположиться таким же образом?

ВверхВниз   Решение


Прямая отрезает от правильного n-угольника со стороной 1 треугольник APQ так, что  AP + AQ = 1  (A – вершина n-угольника).
Найдите сумму углов, под которыми отрезок PQ виден из всех вершин n-угольника, кроме A.

ВверхВниз   Решение


На прозрачном листе бумаги отмечены три точки.
Докажите, что лист можно согнуть по некоторой прямой так, чтобы эти точки оказались в вершинах равностороннего треугольника.

ВверхВниз   Решение


Четырёхугольник ABCD, диагонали которого взаимно перпендикулярны, вписан в окружность с центром O. Найдите расстояние от точки O до стороны AB, если известно, что CD = 8.

ВверхВниз   Решение


Натуральное число n назовём хорошим, если каждый его натуральный делитель, увеличенный на 1, является делителем числа  n + 1.
Найдите все хорошие натуральные числа.

ВверхВниз   Решение


Автор: Тригуб А.

В четырёхугольнике ABCD  ∠B = ∠D = 90°  и  AC = BC + DC.  Точка P на луче BD такова, что  BP = AD.
Докажите, что прямая CP параллельна биссектрисе угла ABD.

ВверхВниз   Решение


В треугольнике ABC угол B равен 60o, биссектрисы AD и CE пересекаются в точке O. Докажите, что OD = OE.

ВверхВниз   Решение


В треугольнике ABC  O – центр описанной окружности, I – центр вписанной. Прямая, проходящая через I и перпендикулярная OI, пересекает AB в точке X, а внешнюю биссектрису угла C – в точке Y. В каком отношении I делит отрезок XY?

ВверхВниз   Решение


а) Существуют ли такие натуральные числа a, b, c, что из двух чисел  a/b + b/c + c/a  и  b/a + c/b + a/c  ровно одно – целое?

б) Докажите, что если они оба целые, то  a = b = c.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 107782  (#М1494)

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Разные задачи на разрезания ]
[ Принцип крайнего (прочее) ]
[ Инварианты ]
Сложность: 4
Классы: 8,9,10

Первоначально даны четыре одинаковых прямоугольных треугольника. Каждым ходом один из имеющихся треугольников разрезается по высоте (выходящей из прямого угла) на два других. Докажите, что после любого количества ходов среди треугольников найдутся два одинаковых.

Прислать комментарий     Решение

Задача 98270  (#М1500)

Темы:   [ Степень вершины ]
[ Четность и нечетность ]
Сложность: 4
Классы: 8,9,10

Докажите, что среди 50 человек найдутся двое, у которых чётное число общих знакомых (быть может, 0) среди остальных 48 человек.

 
Прислать комментарий     Решение

Задача 98248  (#М1502)

Темы:   [ Правильные многоугольники ]
[ Поворот помогает решить задачу ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 4-
Классы: 8,9

Прямая отрезает от правильного n-угольника со стороной 1 треугольник APQ так, что  AP + AQ = 1  (A – вершина n-угольника).
Найдите сумму углов, под которыми отрезок PQ виден из всех вершин n-угольника, кроме A.
Прислать комментарий     Решение


Задача 98253  (#М1504)

Темы:   [ Обыкновенные дроби ]
[ НОД и НОК. Взаимная простота ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Целочисленные и целозначные многочлены ]
[ Теорема Виета ]
[ Кубические многочлены ]
Сложность: 4
Классы: 8,9

а) Существуют ли такие натуральные числа a, b, c, что из двух чисел  a/b + b/c + c/a  и  b/a + c/b + a/c  ровно одно – целое?

б) Докажите, что если они оба целые, то  a = b = c.

Прислать комментарий     Решение

Задача 98268  (#М1506)

Темы:   [ Многочлены (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Примеры и контрпримеры. Конструкции ]
[ Итерации ]
[ Симметрия помогает решить задачу ]
Сложность: 4
Классы: 9,10

а) Разбейте отрезок  [0, 1]  на чёрные и белые отрезки так, чтобы для любого многочлена p(x) степени не выше второй сумма приращений p(x) по всем чёрным отрезкам равнялась сумме приращений p(x) по всем белым интервалам.
(Приращением многочлена p по отрезку  (a, b)  называется число  p(b) – p(a).)

б) Удастся ли проделать аналогичную операцию для всех многочленов степени не выше 1995?

 
Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .