ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Главы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В некоторой стране 1985 аэродромов. С каждого из них вылетел самолёт и приземлился на самом удалённом от места старта аэродроме. Могло ли случиться, что в результате все 1985 самолётов оказались на 50 аэродромах? (Землю можно считать плоской, а маршруты прямыми; попарные расстояния между аэродромами предполагаются различными.) ![]() ![]() Бильярдный стол имеет форму многоугольника (не обязательно выпуклого), у которого соседние стороны перпендикулярны друг другу. Вершины этого многоугольника – лузы, при попадании в которые шар там и остаётся. Из вершины A с (внутренним) углом 90° выпущен шар, который отражается от бортов (сторон многоугольника) по закону "угол падения равен углу отражения". Докажите, что он никогда не вернётся в вершину A. ![]() ![]() |
Страница: << 78 79 80 81 82 83 84 >> [Всего задач: 1956]
В треугольнике ABC сторона AB больше стороны BC. Пусть A1 и B1 – середины сторон BC и AC, а B2 и C2 – точки касания вписанной окружности со сторонами AC и AB. Докажите, что отрезки A1B1 и B2C2 пересекаются в точке X, лежащей на биссектрисе угла B.
Докажите, что проекции вершины A треугольника ABC на биссектрисы внешних и внутренних углов при вершинах B и C лежат на одной прямой.
Докажите, что если две биссектрисы треугольника равны, то он равнобедренный.
Докажите, что эти треугольники равны (точнее говоря, треугольник ABC равен треугольнику A'B'C' или треугольнику C'B'A'). б) Через точку D биссектрисы BB1 угла ABC проведены прямые AA1 и CC1 (точки A1 и C1 лежат на сторонах треугольника). Докажите, что если AA1 = CC1, то AB = BC.
Докажите, что прямая делит периметр и площадь треугольника в равных отношениях тогда и только тогда, когда она проходит через центр вписанной окружности треугольника.
Страница: << 78 79 80 81 82 83 84 >> [Всего задач: 1956] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |