Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Докажите, что никакая прямая не может пересечь все три стороны треугольника (в точках, отличных от вершин).

Вниз   Решение


Докажите, что основания перпендикуляров, опущенных из произвольной точки описанной окружности на стороны треугольника (или их продолжения), лежат на одной прямой (прямая Симсона.)

Вверх   Решение

Задачи

Страница: << 215 216 217 218 219 220 221 >> [Всего задач: 1982]      



Задача 78298

Темы:   [ Алгебраические неравенства (прочее) ]
[ Наибольшая или наименьшая длина ]
Сложность: 4-
Классы: 10,11

Как надо расположить числа  1, 2, ..., 2n  в последовательности  a1, a2, ..., a2n,  чтобы сумма  |a1a2| + |a2a3| + ... + |a2n–1a2n| + |a2na1|  была наибольшей?

Прислать комментарий     Решение

Задача 78301

Темы:   [ Симметрия помогает решить задачу ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4-
Классы: 11

На данной прямой l, проходящей через центр O данной окружности, фиксирована точка C (расположенная внутри окружности — прим. ред.). Точки A и A' расположены на окружности по одну сторону от l так, что углы, образованные прямыми AC и A'C с прямой l, равны. Обозначим через B точку пересечения прямых AA' и l. Доказать, что положение точки B не зависит от точки A.
Прислать комментарий     Решение


Задача 78303

Темы:   [ Индукция (прочее) ]
[ Турниры и турнирные таблицы ]
[ Ориентированные графы ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

В шахматном турнире каждый участник сыграл с каждым из остальных одну партию.
Доказать, что участников можно так занумеровать, что окажется, что ни один участник не проиграл непосредственно за ним следующему.

Прислать комментарий     Решение

Задача 78482

Тема:   [ Подсчет двумя способами ]
Сложность: 4-
Классы: 10,11

Какое наибольшее число клеток может пересечь прямая, проведённая на листе клетчатой бумаги размером m×n клеток?
Прислать комментарий     Решение


Задача 78493

Темы:   [ Раскладки и разбиения ]
[ Геометрические интерпретации в алгебре ]
[ Подсчет двумя способами ]
Сложность: 4-
Классы: 8,9,10

a1, a2, ..., an — произвольные натуральные числа. Обозначим через bk количество чисел из набора a1, a2, ..., an, удовлетворяющих условию:  aik.
Доказать, что   a1 + a2 + ... + an = b1 + b2 + ...

Прислать комментарий     Решение

Страница: << 215 216 217 218 219 220 221 >> [Всего задач: 1982]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .