ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Годы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что никакая прямая не может пересечь все три стороны треугольника (в точках, отличных от вершин).
Докажите, что основания перпендикуляров, опущенных из произвольной точки описанной окружности на стороны треугольника (или их продолжения), лежат на одной прямой (прямая Симсона.)
Попугаи. Собрались три попугая — Гоша, Кеша и Рома. Один из них всегда говорит правду, другой всегда лжет, а третий — хитрец, он иногда говорит правду, иногда лжет. На вопрос: «Кто Кеша?» — попугаи ответили так: Гоша: — Кеша лжец. Кеша: — Я хитрец! Рома: — Он абсолютно честный попугай. Кто же из попугаев честный, кто лжец, а кто хитрец? |
Страница: << 215 216 217 218 219 220 221 >> [Всего задач: 1982]
Как надо расположить числа 1, 2, ..., 2n в последовательности a1, a2, ..., a2n, чтобы сумма |a1 – a2| + |a2 – a3| + ... + |a2n–1 – a2n| + |a2n – a1| была наибольшей?
На данной прямой l, проходящей через центр O данной окружности, фиксирована точка C (расположенная внутри окружности — прим. ред.). Точки A и A' расположены на окружности по одну сторону от l так, что углы, образованные прямыми AC и A'C с прямой l, равны. Обозначим через B точку пересечения прямых AA' и l. Доказать, что положение точки B не зависит от точки A.
В шахматном турнире каждый участник сыграл с каждым из остальных одну партию.
Какое наибольшее число клеток может пересечь прямая, проведённая на листе клетчатой бумаги размером m×n клеток?
a1, a2, ..., an — произвольные натуральные числа. Обозначим через bk количество чисел из набора a1, a2, ..., an, удовлетворяющих условию: ai ≥ k.
Страница: << 215 216 217 218 219 220 221 >> [Всего задач: 1982]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке