ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 1957]      



Задача 66563

Тема:   [ Логика и теория множеств (прочее) ]
Сложность: 3
Классы: 6,7,8,9,10,11

Автор: Фольклор

Среди зрителей кинофестиваля было поровну мужчин и женщин. Всем зрителям понравилось одинаковое количество фильмов. Каждый фильм понравился восьми зрителям. Докажите, что не менее $3/7$ фильмов обладают следующим свойством: среди зрителей, которым фильм понравился, не менее двух мужчин.
Прислать комментарий     Решение


Задача 66564

Темы:   [ Сумма внутренних и внешних углов многоугольника ]
[ Вписанные и описанные многоугольники ]
Сложность: 3
Классы: 9,10,11

Существует ли вписанный в окружность $19$-угольник, у которого нет одинаковых по длине сторон, а все углы выражаются целым числом градусов?
Прислать комментарий     Решение


Задача 66568

Тема:   [ Теория чисел. Делимость ]
Сложность: 3
Классы: 8,9,10,11

Приведите пример числа, делящегося на 2020, в котором каждая из десяти цифр встречается одинаковое количество раз.
Прислать комментарий     Решение


Задача 66569

Тема:   [ Периодичность и непериодичность ]
Сложность: 3
Классы: 8,9,10,11

Автор: Фольклор

Существует ли такая непериодическая функция $f$, определённая на всей числовой прямой, что при любом $x$ выполнено равенство $f(x + 1)=f(x + 1)f(x)+1?$
Прислать комментарий     Решение


Задача 66571

Темы:   [ Замощения костями домино и плитками ]
[ Разрезания, разбиения, покрытия и замощения ]
Сложность: 3
Классы: 9,10,11

Из шахматной доски $8\times8$ вырезали 10 клеток. Известно, что среди вырезанных клеток есть как черные, так и белые. Какое наибольшее количество двухклеточных прямоугольников можно после этого гарантированно вырезать из этой доски?
Прислать комментарий     Решение


Страница: << 28 29 30 31 32 33 34 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .