ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 1984]      



Задача 78521

Темы:   [ НОД и НОК. Взаимная простота ]
[ Доказательство от противного ]
Сложность: 3
Классы: 9,10

Доказать, что произведение двух последовательных натуральных чисел не является степенью никакого целого числа.

Прислать комментарий     Решение

Задача 78525

Тема:   [ Десятичная система счисления ]
Сложность: 3
Классы: 10,11

Число N является точным квадратом и не заканчивается нулём. После зачёркивания у этого числа двух последних цифр снова получится точный квадрат. Найти наибольшее число N с таким свойством.
Прислать комментарий     Решение


Задача 78528

Темы:   [ Вспомогательные равные треугольники ]
[ Хорды и секущие (прочее) ]
Сложность: 3
Классы: 7,8

На отрезке AB выбрана произвольно точка C и на отрезках AB, AC и BC, как на диаметрах, построены окружности Ω1, Ω2 и Ω3. Через точку C проводится произвольная прямая, пересекающая окружность Ω1 в точках P и Q, а окружности Ω2 и Ω3 в точках R и S соответственно. Доказать, что  PR = QS.

Прислать комментарий     Решение

Задача 78550

Тема:   [ Признаки делимости (прочее) ]
Сложность: 3
Классы: 8,9

Докажите следующий признак делимости на 37. Для того, чтобы узнать, делится ли число на 37, надо разбить его справа налево на группы по три цифры. Если сумма полученных трёхзначных чисел делится на 37, то и данное число делится на 37. (Слово "трёхзначные" употреблено условно: некоторые из групп могут начинаться с нулей и быть на самом деле двузначными или меньше; не трёхзначной будет и самая левая группа, если количество цифр нашего числа не кратно 3.)

Прислать комментарий     Решение

Задача 78551

Тема:   [ Метод ГМТ ]
Сложность: 3
Классы: 8,9

Дана прямая a и два непараллельных отрезка AB и CD по одну сторону от неё. Найти на прямой a такую точку M, чтобы треугольники ABM и CDM были равновелики.
Прислать комментарий     Решение


Страница: << 58 59 60 61 62 63 64 >> [Всего задач: 1984]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .