ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 1957]      



Задача 78169

Темы:   [ Двоичная система счисления ]
[ Процессы и операции ]
Сложность: 2+
Классы: 8,9

Пусть a и b — целые числа. Напишем число b справа от числа a. Если число a чётное, то разделим его на 2, если оно нечётное, то сначала вычтем из него единицу, а потом разделим его на 2. Получившееся число a1 напишем под числом a. Справа от числа a1 напишем число 2b. С числом a1 проделаем ту же операцию, что и с числом a, и, получив число a2, напишем его под числом a1. Справа от числа a2 напишем число 4b и так далее. Этот процесс продолжаем до тех пор, пока не получим в левом столбце число 1. Доказать, что сумма тех чисел правого столбца, слева от которых стоят нечётные числа, равна произведению ab.
Прислать комментарий     Решение


Задача 78174

Тема:   [ Квадратные корни (прочее) ]
Сложность: 2+
Классы: 9,10

Даны две бочки бесконечно большой емкости. Можно ли, пользуясь двумя ковшами емкостью 2 - $ \sqrt{2}$ и $ \sqrt{2}$, перелить из одной в другую ровно 1 литр?
Прислать комментарий     Решение


Задача 78176

Тема:   [ Площадь четырехугольника ]
Сложность: 2+
Классы: 9,10

Дан выпуклый четырёхугольник ABCD. Середины сторон AB и CD обозначим соответственно через K и M, точку пересечения AM и DK — через O, точку пересечения BM и CK — через P. Доказать, что площадь четырёхугольника MOKP равна сумме площадей треугольников BPC и AOD.
Прислать комментарий     Решение


Задача 78511

Тема:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 2+
Классы: 7,8

В треугольнике ABC высоты, опущенные на стороны AB и BC, не меньше этих сторон соответственно. Найти углы треугольника.
Прислать комментарий     Решение


Задача 78549

Тема:   [ Окружности (построения) ]
Сложность: 2+
Классы: 8,9

Даны окружность O, прямая a, пересекающая её, и точка M. Через точку M провести секущую b так, чтобы её часть, заключённая внутри окружности O, делилась пополам в точке её пересечения с прямой a.
Прислать комментарий     Решение


Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 1957]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .