Страница:
<< 171 172 173 174
175 176 177 >> [Всего задач: 1984]
|
|
|
Сложность: 3+ Классы: 10,11
|
Из точки
O на плоскости проведено несколько векторов, сумма длин которых
равна 4. Доказать, что можно выбрать несколько векторов (или, быть может,
один вектор), длина суммы которых больше 1.
|
|
|
Сложность: 3+ Классы: 9,10
|
Дан треугольник
ABC, в котором сторона
AB больше
BC. Проведены
биссектрисы
AK и
CM (
K лежит на
BC,
M лежит на
AB). Доказать, что
отрезок
AM больше
MK, а отрезок
MK больше
KC.
|
|
|
Сложность: 3+ Классы: 10,11
|
Бумажный квадрат был проколот в 1965 точках. Из точек-проколов и вершин
квадрата никакие три не лежат на одной прямой. Потом сделали несколько
прямолинейных не пересекающихся между собой разрезов, каждый из которых
начинался и кончался только в проколотых точках или вершинах квадрата.
Оказалось, что квадрат разрезан на треугольники, внутри которых проколов нет.
Сколько было сделано разрезов и сколько получилось треугольников?
|
|
|
Сложность: 3+ Классы: 9,10,11
|
Внутри окружности расположен выпуклый пятиугольник (вершины могут лежать как
внутри, так и на окружности). Доказать, что хотя бы одна из его сторон не
больше стороны правильного пятиугольника, вписанного в эту окружность.
|
|
|
Сложность: 3+ Классы: 7,8,9
|
Чему равна максимальная разность между соседними числами из числа тех, сумма
цифр которых делится на 7?
Страница:
<< 171 172 173 174
175 176 177 >> [Всего задач: 1984]