ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 52]      



Задача 66830

Темы:   [ Вписанные и описанные окружности ]
[ Гомотетия помогает решить задачу ]
Сложность: 5
Классы: 8,10,11

Автор: Соколов А.

Из центра O описанной окружности треугольника ABC опустили перпендикуляры OP и OQ на биссектрисы внутреннего и внешнего углов при вершине B. Докажите, что прямая PQ делит пополам отрезок, соединяющий середины сторон CB и AB.
Прислать комментарий     Решение


Задача 66831

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Тождественные преобразования ]
Сложность: 5
Классы: 8,9,10,11

Назовём пару (m, n) различных натуральных чисел m и n хорошей, если mn и (m+1)(n+1) – точные квадраты. Докажите, что для каждого натурального m существует хотя бы одно такое n>m, что пара (m, n) хорошая.
Прислать комментарий     Решение


Задача 66832

Тема:   [ Задачи с неравенствами. Разбор случаев ]
Сложность: 5
Классы: 8,9,10,11

У Пети было несколько сторублёвок, других денег не было. Петя стал покупать книги (каждая книга стоит целое число рублей) и получать сдачу мелочью (монетами в 1 рубль). При покупке дорогой книги (не дешевле 100 рублей) Петя расплачивался только сторублёвками (минимальным необходимым их количеством), а при покупке дешёвой (дешевле 100 рублей) расплачивался мелочью, если хватало, а если не хватало – сторублёвкой. К моменту, когда сторублёвок не осталось, Петя потратил на книги ровно половину своих денег. Мог ли Петя потратить на книги хотя бы 5000 рублей?
Прислать комментарий     Решение


Задача 66854

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 5
Классы: 8,9,10,11

Автор: Дидин М.

Для каких N можно расставить в клетках квадрата $N\times N$ действительные числа так, чтобы среди всевозможных сумм чисел на парах соседних по стороне клеток встречались все целые числа от 1 до 2(N-1)N включительно (ровно по одному разу)?
Прислать комментарий     Решение


Задача 66855

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Признаки и свойства параллелограмма ]
[ Угол между касательной и хордой ]
[ Вспомогательные подобные треугольники ]
Сложность: 5
Классы: 8,9,10,11

Автор: Юран А.Ю.

Трапеция $ABCD$ вписана в окружность. Её основание $AB$ в 3 раза больше основания $CD$. Касательные к описанной окружности в точках $A$ и $C$ пересекаются в точке $K$. Докажите, что угол $KDA$ прямой.
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 52]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .