Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Пусть AA1, BB1, CC1 – высоты остроугольного треугольника ABC, OA, OB, OC – центры вписанных окружностей треугольников AB1C1, BC1A1, CA1B1 соответственно; TA, TB, TC – точки касания вписанной окружности треугольника ABC со сторонами BC, CA, AB соответственно. Докажите, что все стороны шестиугольника TAOCTBOATCOB равны.

Вниз   Решение


Чичиков играет с Ноздрёвым. Сначала Ноздрёв раскладывает 222 ореха по двум коробочкам. Посмотрев на раскладку, Чичиков называет любое целое число N от 1 до 222. Далее Ноздрёв должен переложить, если надо, один или несколько орехов в пустую третью коробочку и предъявить Чичикову одну или две коробочки, где в сумме ровно N орехов. В результате Чичиков получит столько мертвых душ, сколько орехов переложил Ноздрёв. Какое наибольшее число душ может гарантировать себе Чичиков, как бы ни играл Ноздрёв.

ВверхВниз   Решение


Какие множества на комплексной плоскости описываются следующими условиями:
  а)  |z| ≤ 1;   б)  |z – i| ≤ 1;   в)  |z| = z;   г)     д)  arg = π/4;   е)  Re z2 ≤ 1;   ж)  | iz + 1| = 3;   з)  |z – i| + |z + i| = 2;   и)   Im 1/z < –½   к)  π/6 < arg (z – i) < π/4.

Вверх   Решение

Задачи

Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 330]      



Задача 87024

Темы:   [ Свойства сечений ]
[ Отношение объемов ]
[ Объем параллелепипеда ]
[ Две пары подобных треугольников ]
[ Средняя линия треугольника ]
[ Объем тела равен сумме объемов его частей ]
[ Параллелепипеды (прочее) ]
Сложность: 4-
Классы: 10,11

Точки M, N, K – середины рёбер соответственно AB, BC, DD1 параллелепипеда ABCDA1B1C1D1.
  а) Постройте сечение параллелепипеда плоскостью, проходящей через точки M, N, K.
  б) В каком отношении эта плоскость делит ребро CC1 и диагональ DB1?
  в) В каком отношении эта плоскость делит объём параллелепипеда?

Прислать комментарий     Решение

Задача 102430

Темы:   [ Вспомогательные подобные треугольники ]
[ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Трапеции (прочее) ]
[ Средняя линия треугольника ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

В трапеции ABCD с боковыми сторонами  AB = 8  и  CD = 5  биссектриса угла B пересекает биссектрисы углов A и C в точках M и N соответственно, а биссектриса угла D пересекает те же две биссектрисы в точках L и K, причём точка L лежит на основании BC.
  а) В каком отношении прямая MK делит сторону AB, а прямая LN – сторону AD?
  б) Найдите отношение  KL : MN,  если  LM : KN = 4 : 7.

Прислать комментарий     Решение

Задача 66262

Темы:   [ Вписанные и описанные окружности ]
[ Вневписанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Прямая Эйлера и окружность девяти точек ]
[ Средняя линия треугольника ]
[ ГМТ - прямая или отрезок ]
Сложность: 4
Классы: 9,10

В треугольнике ABC  O – центр описанной окружности, I – центр вписанной. Прямая, проходящая через I и перпендикулярная OI, пересекает AB в точке X, а внешнюю биссектрису угла C – в точке Y. В каком отношении I делит отрезок XY?
Прислать комментарий     Решение


Задача 66308

Темы:   [ Ортоцентр и ортотреугольник ]
[ Неравенства для углов треугольника ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Признаки подобия ]
[ Средняя линия треугольника ]
[ ГМТ - прямая или отрезок ]
Сложность: 4
Классы: 9,10

Автор: Mudgal A.

В остроугольном треугольнике ABC углы B и C больше 60°. Точки P, Q на сторонах AB, AC таковы, что A, P, Q и ортоцентр треугольника H лежат на одной окружности; K – середина отрезка PQ. Докажите, что  ∠BKC > 90°.

Прислать комментарий     Решение

Задача 108945

Темы:   [ Три точки, лежащие на одной прямой ]
[ Вневписанные окружности ]
[ Медиана, проведенная к гипотенузе ]
[ Две касательные, проведенные из одной точки ]
[ Средняя линия треугольника ]
Сложность: 4
Классы: 8,9

Одна из вневписанных окружностей треугольника ABC касается стороны AB и продолжений сторон CA и CB в точках C1, B1 и A1 соответственно. Другая вневписанная окружность касается стороны AC и продолжений сторон BA и BC в точках B2, C2 и A2 соответственно. Прямые A1B1 и A2B2 пересекаются в точке P, прямые A1C1 и A2C2 – в точке Q. Докажите, что точки A, P и Q лежат на одной прямой.

Прислать комментарий     Решение

Страница: << 59 60 61 62 63 64 65 >> [Всего задач: 330]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .