ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Для каких n выполняются неравенства:   а)  n! > 2n;   б)  2n > n².

Вниз   Решение


Сторона основания ABC правильной треугольной пирамиды ABCD равна 6, двугранный угол между боковыми гранями равен arccos 7/32. Точки A1 и B1 – середины рёбер AD и BD соответственно, BC1 – высота в треугольнике DBC. Найдите:
  1) угол между прямыми AB и B1C1;
  2) площадь треугольника A1B1C1;
  3) расстояние от точки B до плоскости A1B1C1;
  4) радиус вписанного в пирамиду A1B1C1D шара.

Вверх   Решение

Задачи

Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 464]      



Задача 55129

Темы:   [ Параллелограмм Вариньона ]
[ Отношение площадей подобных треугольников ]
Сложность: 3+
Классы: 8,9

Докажите, что если два выпуклых четырёхугольника расположены так, что середины их сторон совпадают, то их площади равны.

Прислать комментарий     Решение


Задача 67451

Темы:   [ Площадь треугольника (через высоту и основание) ]
[ Отношение площадей подобных треугольников ]
Сложность: 3+
Классы: 8,9,10,11

В треугольнике $ABC$ с прямым углом $C$ провели высоту $CH$. Окружность, проходящая через точки $C$ и $H$, повторно пересекает отрезки $AC$, $CB$ и $BH$ в точках $Q$, $P$ и $R$ соответственно. Отрезки $HP$ и $CR$ пересекаются в точке $T$. Что больше: площадь треугольника $CPT$ или сумма площадей треугольников $CQH$ и $HTR$?

Прислать комментарий     Решение

Задача 67473

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Отношения площадей подобных фигур ]
[ Прямоугольные треугольники (прочее) ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 8,9,10,11

Из прямого угла прямоугольного треугольника опущена высота, и в образовавшиеся треугольники вписаны два квадрата (как на рисунке).

Чему может быть равна сумма площадей этих квадратов, если длина биссектрисы прямого угла треугольника равна $1$?
Прислать комментарий     Решение

Задача 102389

Темы:   [ Отношения площадей ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 3+
Классы: 8,9

В трапеции ABCD ( BC$ \Vert$AD) известно, что AD = 3 . BC. Прямая пересекает боковые стороны трапеции в точках M и N, AM : MB = 3 : 5, CN : ND = 2 : 7. Найдите отношение площадей четырёхугольников MBCN и AMND.

Прислать комментарий     Решение


Задача 102390

Темы:   [ Отношения площадей ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 3+
Классы: 8,9

В трапеции CDEF ( DE$ \Vert$CF) известно, что CF = 2 . DE. На сторонах CD и EF взяты соответственно точки K и L, CK : KD = 3 : 2, EL : LF = 5 : 3. В каком отношении прямая KL делит площадь трапеции?.

Прислать комментарий     Решение


Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 464]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .