Страница:
<< 163 164 165 166
167 168 169 >> [Всего задач: 1284]
Диагонали параллелограмма ABCD пересекаются в точке O.
Описанная окружность треугольника AOB касается прямой BC.
Докажите, что описанная окружность треугольника BOC касается прямой CD.
Во вписанном четырёхугольнике ABCD известны отношения AB : DC = 1 : 2 и BD : AC = 2 : 3. Найдите DA : BC.
На дуге AB есть произвольная точка M. Из середины K отрезка MB опущен перпендикуляр KP на прямую MA.
Доказать, что все прямые PK проходят через одну точку.
Пусть Oa, Ob и Oc – центры описанных окружностей треугольников PBC, PCA и PAB.
Докажите, что если точки Oa и Ob лежат на прямых PA и PB, то точка Oc лежит на прямой PC.
|
|
|
Сложность: 3+ Классы: 8,9,10
|
На сторонах AB и AC треугольника ABC нашлись такие точки M и N, отличные от вершин, что MC = AC и NB = AB. Точка P симметрична точке A относительно прямой BC. Докажите, что PA является биссектрисой угла MPN.
Страница:
<< 163 164 165 166
167 168 169 >> [Всего задач: 1284]