Страница:
<< 33 34 35 36
37 38 39 >> [Всего задач: 965]
|
|
Сложность: 3+ Классы: 9,10
|
Последовательность натуральных чисел a1, a2, ..., an, ... такова, что для каждого n уравнение an+2x² + an+1x + an = 0 имеет действительный корень. Может ли число членов этой последовательности быть
а) равным 10;
б) бесконечным?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Коэффициенты квадратного уравнения x² + px + q = 0 изменили не больше чем на 0,001.
Может ли больший корень уравнения измениться больше, чем на 1000?
|
|
Сложность: 3+ Классы: 10,11
|
Докажите, что существует бесконечно много нечётных n, для которых число 2n + n – составное.
|
|
Сложность: 3+ Классы: 9,10,11
|
Приведите пример многочлена P(x) степени 2001, для которого P(x) + P(1 – x) ≡ 1.
|
|
Сложность: 3+ Классы: 8,9,10
|
В выражении (x4 + x³ – 3x² + x + 2)2006 раскрыли скобки и привели подобные слагаемые.
Докажите, что при некоторой степени переменной x получился отрицательный коэффициент.
Страница:
<< 33 34 35 36
37 38 39 >> [Всего задач: 965]