Страница:
<< 42 43 44 45
46 47 48 >> [Всего задач: 1435]
Через точку I пересечения биссектрис треугольника ABC проведена прямая, пересекающая стороны AB и BC в точках M и N
соответственно. Треугольник BMN оказался остроугольным. На стороне AC выбраны точки K и L так, что ∠ILA = ∠IMB, ∠IKC = ∠INB. Докажите, что
AM + KL + CN = AC.
Точка M расположена внутри треугольника ABC. Известно, что треугольники AMB, AMC и BMC равновелики.
Докажите, что M – точка пересечения медиан треугольника ABC.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Даны окружность и не лежащая на ней точка. Из всех треугольников, одна вершина которых совпадает с данной точкой, а две другие лежат на окружности, выбран треугольник наибольшей площади. Докажите, что он равнобедренный.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Середина стороны треугольника и основание высоты, проведённой к этой стороне, симметричны относительно точки касания этой стороны с вписанной окружностью.
Докажите, что эта сторона составляет треть периметра треугольника.
|
|
Сложность: 3+ Классы: 7,8,9
|
AL – биссектриса треугольника ABC, K – такая точка на стороне AC, что CK = CL. Прямая KL и биссектриса угла B пересекаются в точке P.
Докажите, что AP = PL.
Страница:
<< 42 43 44 45
46 47 48 >> [Всего задач: 1435]