ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 460]      



Задача 116356

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Признаки подобия ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Центр масс ]
[ Теоремы Чевы и Менелая ]
Сложность: 3+
Классы: 8,9,10

На сторонах BC, AC и AB треугольника ABC расположены точки A1, B1 и C1 соответственно, причём  BA1 : A1C = CB1 : B1A = AC1 : C1B = 1 : 3.  Найдите площадь треугольника, образованного пересечениями прямых AA1, BB1 и CC1, если известно, что площадь треугольника ABC равна 1.

Прислать комментарий     Решение

Задача 116622

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 9,10,11

Автор: Фольклор

Внутри прямоугольного треугольника АВС выбрана произвольная точка Р, из которой опущены перпендикуляры PK и РМ на катеты АС и ВС соответственно. Прямые АР и ВР пересекают катеты в точках A' и B' соответственно. Известно, что  SAPB' : SKPB' = m.  Найдите  SMPA' : SBPA'.

Прислать комментарий     Решение

Задача 54937

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC известно, что AB = 6, BC = 9, AC = 10. Биссектриса угла B пересекает сторону AC в точке M. На отрезке BM взята точка O так, что BO : OM = 3 : 1. Площадь какого из треугольников AOB, BOC или AOC является наименьшей?

Прислать комментарий     Решение


Задача 54938

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC известно, что AB = 10, BC = 12, AC = 8. На стороне AB взята точка K, причём AK : KB = 2 : 3, а на стороне BC — точка M, причём BM : MC = 2 : 1. На отрезке KM взята точка O так, что KO : OM = 4 : 5. Площадь какого из треугольников ABO, BCO или ACO является наименьшей?

Прислать комментарий     Решение


Задача 54968

Темы:   [ Ромбы. Признаки и свойства ]
[ Отношение площадей подобных треугольников ]
Сложность: 3+
Классы: 8,9

Треугольник и вписанный в него ромб имеют общий угол. Cтороны треугольника, заключающие этот угол, относятся как $ {\frac{m}{n}}$. Найдите отношение площади ромба к площади треугольника.

Прислать комментарий     Решение


Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 460]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .