ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Решить в целых числах уравнение x² = 14 + y². а) Сколькими способами можно разбить 15 человек на три команды по пять человек в каждой? Может ли сумма цифр точного квадрата равняться 1970? Дан треугольник ABC и точка P. Точки A', B', C' – проекции P на прямые BC, CA, AB. Прямая, проходящая через P и параллельная AB, вторично пересекает описанную окружность треугольника PA'B' в точке C1. Точки A1, B1 определены аналогично. Докажите, что Пусть p и q – различные простые числа. Докажите, что б) Пусть P(xn) делится на x – 1. Докажите, что P(xn) делится на xn – 1. Найдите наименьшее число, записываемое одними
единицами, делящееся на
Решить в целых числах уравнение x² + y² = 4z – 1. а) Дано шестизначное число abcdef, причём abc + def делится на 37. Докажите, что и само число делится на 37. Даны точки A, B. Найдите геометрическое место таких точек C, что C, середины отрезков AC, BC и точка пересечения медиан треугольника ABC лежат на одной окружности. С помощью двусторонней линейки постройте центр
данной окружности, диаметр которой больше ширины линейки.
Найдите наименьшее натуральное число, делящееся на 36, в записи которого встречаются все 10 цифр. Доказать, что можно расставить в вершинах правильного n-угольника действительные числа x1, x2, ..., xn, все отличные от 0, так, чтобы для любого правильного k-угольника, все вершины которого являются вершинами исходного n-угольника, сумма чисел, стоящих в его вершинах, равнялась 0.
Докажите, что квадрат можно разрезать на n квадратов для
любого n, начиная с шести.
Даны две параллельные прямые и отрезок, лежащий на одной из них. Удвойте этот отрезок с помощью одной линейки. Сколькими способами можно расселить 15 гостей в четырёх комнатах, если требуется, чтобы ни одна из комнат не осталась пустой? Докажите, что число 30239 + 23930 составное. |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 175]
В большей из двух концентрических окружностей проведена хорда, равная 32 и касающаяся меньшей окружности. Найдите радиус каждой из окружностей, если ширина образовавшегося кольца равна 8.
Окружность касается одного из катетов равнобедренного прямоугольного треугольника и проходит через вершину противолежащего острого угла. Найдите радиус окружности, если её центр лежит на гипотенузе треугольника, а катет треугольника равен a.
На одной стороне прямого угла с вершиной в точке O взяты две точки A и B, причем OA = a, OB = b. Найдите радиус окружности, проходящей через точки A и B и касающейся другой стороны угла.
На окружности радиуса r выбраны три точки таким образом, что окружность оказалась разделенной на три дуги, которые относятся как 3:4:5. В точках деления к окружности проведены касательные. Найдите площадь треугольника, образованного этими касательными.
AB — диаметр окружности, BC и CDA — касательная и секущая. Найдите отношение CD : DA, если BC равно радиусу окружности.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 175]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке