ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

В четырёхугольной пирамиде SABCD основание ABCD имеет своей осью симметрии диагональ AC , которая равна 9, а точка E пересечения диагоналей четырёхугольника ABCD делит отрезок AC так, что отрезок AE меньше отрезка EC . Через середину бокового ребра пирамиды SABCD проведена плоскость, параллельная основанию и пересекающаяся с рёбрами SA , SB , SC , SD соответственно в точках A1 , B1 , C1 , D1 . Получившийся многогранник ABCDA1B1C1D1 , являющийся частью пирамиды SABCD , пересекается с плоскостью α по правильному шестиугольнику, со стороной 2. Найдите площадь треугольника ABD , если плоскость α пересекает отрезки BB1 и DD1 .

Вниз   Решение


В усеченную треугольную пирамиду вписана сфера, касающаяся оснований в точках $T_1$, $T_2$. Пусть $h$ – высота пирамиды, $R_1$, $R_2$ – радиусы окружностей, описанных около ее оснований, $O_1$, $O_2$ – центры этих окружностей. Докажите, что $$ R_1R_2h^2=(R_1^2-O_1T_1^2)(R_2^2-O_2T_2^2). $$

ВверхВниз   Решение


Придумайте многогранник, у которого нет трех граней с одинаковым числом сторон.

ВверхВниз   Решение


На плоскости дано n прямых общего положения. Чему равно число образованных ими треугольников?

ВверхВниз   Решение



В правильной усеченной четырехугольной пирамиде высота равна 2, а стороны оснований равны 3 и 5. Найдите диагональ усеченной пирамиды.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 125]      



Задача 56710

Тема:   [ Радикальная ось ]
Сложность: 3
Классы: 9

На плоскости даны окружность S и точка P. Прямая, проведенная через точку P, пересекает окружность в точках A и B. Докажите, что произведение  PA . PB не зависит от выбора прямой.



Прислать комментарий     Решение

Задача 56711

Тема:   [ Радикальная ось ]
Сложность: 3
Классы: 9

Докажите, что для точки P, лежащей вне окружности S, ее степень относительно S равна квадрату длины касательной, проведенной из этой точки.
Прислать комментарий     Решение


Задача 56712

Тема:   [ Радикальная ось ]
Сложность: 3
Классы: 9

Докажите, что степень точки P относительно окружности S равна d2 - R2, где R — радиус Sd — расстояние от точки P до центра S.
Прислать комментарий     Решение


Задача 56713

Тема:   [ Радикальная ось ]
Сложность: 3
Классы: 9

Окружность задана уравнением f (x, y) = 0, где f (x, y) = x2 + y2 + ax + by + c. Докажите, что степень точки (x0, y0) относительно этой окружности равна f (x0, y0).
Прислать комментарий     Решение


Задача 116095

Темы:   [ Радикальная ось ]
[ Три точки, лежащие на одной прямой ]
Сложность: 3
Классы: 8,9

Расстояние между центрами окружностей больше суммы их радиусов.
Докажите, что середины отрезков четырёх общих касательных этих окружностей лежат на одной прямой.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 125]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .