ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 136]      



Задача 116992

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Вписанные и описанные окружности ]
[ Ромбы. Признаки и свойства ]
[ Гомотетия помогает решить задачу ]
Сложность: 4-
Классы: 9,10,11

Автор: Фольклор

В треугольнике АВС проведена биссектриса АА1. Докажите, что серединный перпендикуляр к АА1, перпендикуляр к ВС, проходящий через точку А1, и прямая АО (О – центр описанной окружности) пересекаются в одной точке.

Прислать комментарий     Решение

Задача 56888

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Теорема синусов ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 4
Классы: 8,9

На сторонах AB и BC остроугольного треугольника ABC внешним образом построены квадраты ABC1D1 и A2BCD2.
Докажите, что точка пересечения прямых AD2 и CD1 лежит на высоте BH.

Прислать комментарий     Решение

Задача 64917

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Гомотетия помогает решить задачу ]
[ Прямая Симсона ]
[ Ортоцентр и ортотреугольник ]
Сложность: 4
Классы: 9,10,11

Дан треугольник ABC. Рассматриваются прямые l, обладающие следующим свойством: три прямые, симметричные l относительно сторон треугольника, пересекаются в одной точке. Докажите, что все такие прямые проходят через одну точку.

Прислать комментарий     Решение

Задача 65047

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Три точки, лежащие на одной прямой ]
[ Проективная геометрия (прочее) ]
Сложность: 4
Классы: 9,10,11

На окружности с диаметром AC выбрана произвольная точка B, отличная от A и C. Пусть M, N – середины хорд AB, BC, а P, Q – середины меньших дуг, стягиваемых этими хордами. Прямые AQ и BC пересекаются в точке K, а прямые CP и AB – в точке L.
Докажите, что прямые MQ, NP и KL пересекаются в одной точке.

Прислать комментарий     Решение

Задача 65373

Темы:   [ Три прямые, пересекающиеся в одной точке ]
[ Вписанные и описанные окружности ]
[ Симметрия помогает решить задачу ]
Сложность: 4
Классы: 9,10,11

Диагонали выпуклого четырёхугольника ABCD перпендикулярны. Точки A', B', C', D' – центры описанных окружностей треугольников ABD, BCA, CDB, DAC соответственно. Докажите, что прямые AA', BB', CC', DD' пересекаются в одной точке.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 136]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .