ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На центральном телеграфе стоят разменные автоматы, которые меняют 20 коп. на 15, 2, 2 и 1; 15 коп. на 10, 2, 2 и 1; 10 коп. на 3, 3, 2 и 2. Петя разменял 1 руб. 25 коп. серебром на медь. Вася, посмотрев на результат, сказал: "Я точно знаю, какие у тебя были монеты" и назвал их. Назовите и вы.

Вниз   Решение


В трапеции ABCD одно основание в два раза больше другого. Меньшее основание равно c. Диагонали трапеции пересекаются под прямым углом, а отношение боковых сторон равно k. Найдите боковые стороны трапеции.

Вверх   Решение

Задачи

Страница: << 61 62 63 64 65 66 67 >> [Всего задач: 420]      



Задача 110036

Темы:   [ Последовательности (прочее) ]
[ Рекуррентные соотношения (прочее) ]
[ Ограниченность, монотонность ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 9,10,11

Автор: Храбров А.

По данному натуральному числу a0 строится последовательность {an} следующим образом     если an нечётно, и a0/2, если an чётно. Докажите, что при любом нечётном  a0 > 5  в последовательности {an} встретятся сколь угодно большие числа.

Прислать комментарий     Решение

Задача 116373

Темы:   [ Формулы сокращенного умножения (прочее) ]
[ Корни. Степень с рациональным показателем (прочее) ]
[ Рациональные и иррациональные числа ]
Сложность: 4-
Классы: 9,10,11

Целые числа m и n таковы, что сумма     целая. Верно ли, что оба слагаемых целые?

Прислать комментарий     Решение

Задача 116624

Темы:   [ Многочлены (прочее) ]
[ Производная (прочее) ]
[ Выпуклость и вогнутость (прочее) ]
Сложность: 4-
Классы: 9,10,11

Автор: Фольклор

Существуют ли такие значения a и b, при которых уравнение   х4 – 4х3 + 6х² + aх + b = 0  имеет четыре различных действительных корня?

Прислать комментарий     Решение

Задача 60559

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Произведения и факториалы ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 4
Классы: 9,10,11

Существует ли такое целое число r, что    является целым числом при любом n?

Прислать комментарий     Решение

Задача 60625

Темы:   [ Цепные (непрерывные) дроби ]
[ Квадратные уравнения. Формула корней ]
[ Теорема о промежуточном значении. Связность ]
Сложность: 4
Классы: 10,11

Докажите, что если положительная квадратичная иррациональность  α =   разлагается в чисто периодическую цепную дробь, то сопряженная ей квадратичная иррациональность  α' =   принадлежит интервалу  (– 1, 0).

Прислать комментарий     Решение

Страница: << 61 62 63 64 65 66 67 >> [Всего задач: 420]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .